Machine Learning - Ximilar: Visual AI for Business https://www3.ximilar.com/blog/tag/machine-learning/ VISUAL AI FOR BUSINESS Wed, 04 Sep 2024 09:00:29 +0000 en-US hourly 1 https://wordpress.org/?v=6.6.2 https://www.ximilar.com/wp-content/uploads/2024/08/cropped-favicon-ximilar-32x32.png Machine Learning - Ximilar: Visual AI for Business https://www3.ximilar.com/blog/tag/machine-learning/ 32 32 How to Identify Sports Cards With AI https://www.ximilar.com/blog/how-to-identify-sports-cards-with-ai/ Mon, 12 Feb 2024 11:47:38 +0000 https://www.ximilar.com/?p=15155 Introducing sports card recognition API for card collector shops, apps, and websites.

The post How to Identify Sports Cards With AI appeared first on Ximilar: Visual AI for Business.

]]>
We have huge news for the collectors and collectibles marketplaces. Today, we are releasing an AI-powered system able to identify sports cards. It was a massive amount of work for our team, and we believe that our sports card identification API can benefit a lot of local shops, small and large businesses, as well as individual developers who aim to build card recognition apps.

Sports Cards Collecting on The Rise

Collecting sports cards, including hockey cards, has been a popular hobby for many people. Especially during my childhood, I collected hockey cards, as a big fan of the sport. Today, card collecting has evolved into an investment, and many new collectors enter the community solely to buy and sell cards on various marketplaces.

Some traditional baseball rookie cards can have significant value, for example, the estimated price of a vintage Mickey Mantle PSA 10 1952 Topps rookie baseball card is $15 million – $30 million.

Our Existing Solutions for Card Collector Sites & Apps

Last year, we already released several services focused on trading cards:

  • First, we released a Trading Card Game Identifier API. It can identify trading card games (TCGs), such as Pokémon, Magic The Gathering: MTG and Yu-Gi-Oh!, and more. We believe that this system is amongst the fastest, most precise and accurate in the world.

  • Second, we built a Card Grading and fast Card Conditioning API for both sports and trading card games. This service can instantly evaluate each corner, edges, and surface, and check the centring in a card scan, screenshot or photo in a matter of seconds. Each of these features is graded independently, resulting in an overall grade. The outputs can be both values or conditions-based (eBay or TCGPlayer naming). You can test it here.

  • We have also been building custom visual search engines for private collections of trading cards and other collectibles. With this feature, people can visit marketplaces or use their apps to upload card images, and effortlessly search for identical or similar items in their database with a click. Visual search is a standard AI-powered function in major price comparators. If a particular game is not on our list, or if you wish to search within your own collection, list, or portfolio of other collectibles (e.g., coins, stamps, or comic books), we can also create it for you – let us know.

We have been gradually establishing a track record of successful projects in the collectibles field. From the feedback of our customers, we hear that our services are much more precise than the competition. So a couple of months ago, we started building a sports card scanning system as well. It allows users to send the scan to the API, and get back precise identification of the card.

Our API is open to all developers, just sign up to Ximilar App, and you can start building your own great product on top of it!

Test it Now in Live Demo

This solution is already available for testing in our public demo. Try it for free now!

Ximilar AI analyses the sports cards and provides detailed information about them, including links to marketplaces.

The Main Features of Sports Cards

There are several factors determining the value of the card:

  • Rarity & Scarcity: Cards with limited production runs or those featuring star players are often worth more.

  • Condition: Like any collectible item, the condition of a sports card is crucial. Cards in mint or near-mint condition are generally worth more than those with wear and tear.

  • Grade & Grading services: Graded cards (from PSA or Beckett) typically have higher prices in the market.

  • The fame of the player: Names of legends like Michael Jordan or Shohei Ohtani instantly add value to the trading cards in your collection.

  • Autographs, memorabilia, and other features, that add to the card’s rarity.

Each card manufacturer must have legal rights and licensing agreements with the sports league, teams, or athletes. Right now, there are several main producers:

  • Panini – This Italian company is the largest player in the market in terms of licensing agreements and number of releases.

  • Topps – Topps is an American company with a long history. They are now releasing cards from Baseball, Basketball or MMA.

  • Upper Deck – Upper Deck is a company with an exclusive license for hockey cards from the NHL.

  • Futera – Futera focuses mostly on soccer cards.

Example of Upper Deck, Futera, Panini Prizm and Topps Chrome cards.
Example of Upper Deck, Futera, Panini Prizm and Topps Chrome cards.

Dozens of other card manufacturers were acquired by these few players. They add their brands or names as special sets in their releases. For example, the Fleer company was acquired by Upper Deck in 2005 and Donruss was bought by Panini.

Identifying Sports Cards With Artificial Intelligence

When it comes to sports cards, it’s crucial to recognize that the identification challenge is more complex than that of Pokémon or Magic The Gathering cards. While these games present challenges such as identical trading card artworks in multiple sets or different language variants, sports cards pose distinct difficulties in recognition and identification, such as:

  • Amount of data/cards – The companies add a lot of new cards into their portfolio each year. As of the latest date, the total figure exceeds tens of millions of cards.

  • Parallels, variations, and colours – The card can have multiple variants with different colours, borders, various foil effects, patterns, or even materials. More can be read in a great article by getcardbase.com. Look at the following example of the NBA’s LeBron James card, and some of its variants.

LeBron James 2021 Donruss Optic #41 card in several variations of different parallels and colors.
LeBron James 2021 Donruss Optic #41 card in several variations of different parallels and colors.
  • Special cards: Short Print (SP) and Super Short Print (SSP) cards are intentionally produced in smaller quantities than the rest of the particular set. The most common special cards are Rookie cards (RC) that feature a player in their rookie season and that is why they hold sentimental and historical value.

  • Serial numbered cards: A type of trading cards that have a unique serial number printed directly on the card itself.

  • Authentic signature/autograph: These are usually official signature cards, signed by players. To examine the authenticity of the signature, and thus ensure the card’s value, reputable trading card companies may employ card authentication processes.

  • Memorabilia: In the context of trading cards, memorabilia cards are special cards that feature a piece of an athlete’s equipment, such as a patch from a uniform, shoe, or bat. Sports memorabilia are typically more valuable because of their rarity. These cards are also called relic cards.

As you can see, it’s not easy to identify the card and its price and to keep track of all its different variants.

Example: Panini Prizm Football Cards

Take for example the 2022 Panini Prizm Football Cards and the parallel cards. Gold Prizms (10 cards) are worth much more than the Orange Prizms (with 250 cards) because of their scarcity. Upon the release of a card set, the accompanying checklist, presented as a population table, is typically made available. This provides detailed information about the count for each variation.

2022 Panini Prizm Football Cards examples. (Source: beckett.com)
2022 Panini Prizm Football Cards examples. (Source: beckett.com)

Next, for Panini Prizm, there are more than 20 parallel foil patterns like Speckle, Hyper, Diamond, Fast Break/Disco/No Huddle, Flash, Mozaic, Mojo, Pulsar, Shimmer, etc. with all possible combinations of colours such as green, blue, pink, purple, gold, and so on.

These combinations matter because some of them are more rare than others. There are also different names for the foil cards between companies. Topps has chrome Speckle patterns which are almost identical to the Panini Prizm Sparkle pattern.

Lastly, no database contains each picture for every card in the world. This makes visual search extremely hard for cards that have no picture on the internet.

If you feel lost in all the variations and parallels cards, you are not alone.
If you feel lost in all the variations and parallels cards, you are not alone.

Luckily, we developed (and are actively improving) an AI service that is trying to tackle the mentioned problems with sports cards identification. This service is available on click as an open REST API, so anyone can connect to develop and integrate their system with ours. The results are in seconds and it’s one of the fastest services available in the market.

How to Identify Sports Cards Via API?

In general, you can use and connect to the REST API with any programming language like Python or Javascript. Our developer’s documentation will serve you as a guide with many helpful instructions and tips.

To access our API, sign in Ximilar App to get your unique API authentication token. You will find the administration of your services under Collectibles Recognition. Here is an example REST Request via curl:

$ curl https://api.ximilar.com/collectibles/v2/sport_id -H "Content-Type: application/json" -H "Authorization: Token __API_TOKEN__" -d '{
    "records": [
        { "_url": "__PATH_TO_IMAGE_URL__"}
    ], "slab_id": false
}'
The example response when you identify sports cards with Ximilar API.
The example response when you identify sports cards with Ximilar API.

The API response will be as follows:

  • When the system succesfuly indetifies the card, it will return you full identification. You will get a list of features such as the name of the player/person, the name of the set, card number, company, team and features like foil, autograph, colour and more. It is also able to generate URL links for eBay searches so you can check the card values or purchase them directly.
  • If we are not sure about the identification (or we don’t have a specific card in our system) the system will return empty search results. In such case, feel free to ask for support.

How AI Sports Cards Identification Works?

Our identification system uses advanced machine learning models with smart algorithms for post-processing. The system is a complex flow of models that incorporates visual search. We trained the system on a large amount of data, curated by our own annotation team.

First, we identify the location of the card in your photo. Second, we do multiple AI analyses of the card to identify whether it has autograph and more. The third step is to find the card in our collection with visual search (reverse image search). Lastly, we use AI to rerank the results to make them as precise as possible.

What Sports Cards Can Ximilar Identify?

Our sports cards database contains a few million cards. Of course, this is just a small subset of all collectible cards that were produced. Right now we focus on 6 main domains: Baseball cards, Football cards, Basketball cards, Hockey cards, Soccer and MMA, and the list expands based on demand. We continually add more data and improve the system.

We try to track and include new releases every month. If you see that we are missing some cards and you have the collection, let us know. We can agree on adding them to training data and giving you a discount on API requests. Since we want to build the most accurate system for card identification in the world, we are always looking for ways to gather more cards and improve the software’s accuracy.

Who Will Benefit From AI-Powered Sports Cards Identifier?

Access to our REST API can improve your position in the market especially if:

  • You own e-commerce sites/marketplaces that buy & sell cards – If you have your own shop, site or market for people who collect cards, this solution can boost your traffic and sales.

  • You are planning to design and publish your own collector app and need an all-in-one API for the recognition and grading of cards.

  • You want to manage, organize and add data to your own card collection.

Is My Data Safe?

Yes. First of all, we don’t save the analysed images. We don’t even have so much storage capacity to store each analysed image, photo, scan and screen you add to your collection. Once our system processes an image, it removes it from the memory. Also, GDPR applies to all photos that enter our system. Read more in our FAQs.

How Fast is the System, Can I Connect it to a Scanner?

The system can identify one card scan in one second. You can connect it to any card scanner available in the market. The scanning outputs the cards into the folders, to which you can apply a script for card identification.

Sports Cards Recognition Apps You Can Build With Our API

Here are a few ideas for apps that you can build with our Sport Card Identifier and REST API:

  • Automatic card scanning system – create a simple script that will be connected to our API and your scanners like Fujitsu fi-8170. The system will be able to document your cards with incredible speed. Several of our customers are already organizing their collections of TCGs (like Magic The Gathering or Pokémon) and adding new cards on the go.

  • Price checking app or portfolio analysis – create your phone app alternative to Ludex or CollX. Start documenting the cards by taking pictures and grading your trading card collection. Our system can provide card IDs, pre-grade cards, and search them in an online marketplace. Easily connect with other collectors, purchase & sell the cards. Test our system’s ability to provide URLs to marketplaces here.

  • Analysing eBay submission – would you like to know what your card’s worth and how many are currently available in the market? For how much was the card sold in the past? Track the price of the card over time? Or what is the card population? With our technology, you can build a system that can analyse it.

AI for Trading Cards and Collectors

So this is our latest narrow AI service for the collector community. It is quite easy to integrate it into any system. You can use it for automatic documentation of your collection or simply to list your cards on online markets.

For more information, contact us via chat or contact page, and we can schedule a call with you and talk about the technical and business details. If you want to go straight and implement it, take look at our developer’s API documentation and don’t hesitate to ask for guidance anytime.

Right now we are also working on Comics identification (Comic book, magazines and manga). If you would like to hear more then just contact us via email or chat.

The post How to Identify Sports Cards With AI appeared first on Ximilar: Visual AI for Business.

]]>
The Best Tools for Machine Learning Model Serving https://www.ximilar.com/blog/the-best-tools-for-machine-learning-model-serving/ Wed, 25 Oct 2023 09:26:42 +0000 https://www.ximilar.com/?p=14372 An overview and analysis of serving systems and deployment methods for Machine Learning and AI models.

The post The Best Tools for Machine Learning Model Serving appeared first on Ximilar: Visual AI for Business.

]]>
As the prevalence of AI in various industries increases, so does the need to optimize the machine learning model serving. As a machine learning engineer, I’ve seen that training models is just one part of the ML journey. Equally important as the other challenges is the careful selection of deployment strategies and serving systems.

In this article, we’ll delve into the importance of selecting the right tools for machine learning model serving, and talk about their pros and cons. We’ll explore various deployment options, serving systems like TensorFlow Serving, TorchServe, Triton, Ray Serve, and MLflow, and also the deployment of specific models such as large language models (LLMs). I’ll also provide some thoughts and recommendations for navigating this ever-evolving landscape.

Machine Learning Models Serving Then and Now

When I first began my journey in the world of machine learning, the landscape was constantly shifting. The frameworks being actively developed and used at the time included Caffee, Theano, TensorFlow (Google) and PyTorch (Meta), all vying for their place in the world of AI. As time has passed, the competition has become more and more lopsided, with TensorFlow and PyTorch leading the way. While TensorFlow has remained the more popular choice for production-ready models, PyTorch has been steadily gaining in popularity, particularly within research circles, for its faster, more intuitive prototyping capabilities.

While there are hundreds of libraries available to train and optimize models, the most popular frameworks such as TensorFlow, PyTorch and Scikit-Learn are all based on Python programming language. Python is often chosen due to its simplicity and the vast amount of libraries for data manipulation. However, it is not the fastest language and can present problems with parallel processing, threads and GIL. Additionally, specialized libraries such as spaCy and PyG are available for specific tasks, such as Natural Language Processing (NLP) and Graph Analysis, respectively. The focus was and still partially is on the optimization of models and architectures. On the other hand, there are more and more problems in machine learning models serving in production because of the large-scale adoption of AI.

Nowadays, even more complex models like large language models (LLM, GPT/LAMMA/BARD) and multi-modal models are in fashion which creates a bigger pressure on optimal model deployment, infrastructure environment and storage capacity. Making machine learning model serving and deployment effective and cheap is a big problem. Even companies like Microsoft or NVIDIA are actively working on solutions that will cut the costs of it. So let’s look into some of the best options that we as developers currently have.

The Machine Learning and DevOps Challenges

Being a Machine Learning Engineer, I can say that training a model is just a small part of the whole lifecycle. Data preparation, deployment process and running the model smoothly for numerous customers is a daily challenge and a major part of the job.

Deployment Strategies

In addition to having to allocate GPU/CPU resources and manage inference speed, the company deploying ML models must also consider the deployment strategy for the trained model. You could be deploying the ML model as an API, running it in a container, or using a serverless platform. Each of these options comes with its own set of benefits and drawbacks, so carefully considering the best approach is essential. When we have a trained model, there are several options on how to use it:

  • Deploy it as an API endpoint, sending data in the request and getting results immediately in response. This approach is suitable for faster models that are able to process the data in just a few seconds.
  • Deploy it as an API endpoint, but return just a promise or asynchronous response from the model. This is great for computational-intensive models that can take minutes or hours of processing. For example, generative models and upscaling models are slow and require this approach.
  • Use a system that is able to serve it for you.
  • Use the model locally on your data.
  • Deploy models on Smartphones or IoT devices with feed from local sensors.

Other Challenges

The complexity of machine learning projects grows with variables such as:

  • The number of models – It is common practice to use multiple models. For example, at this moment, there are tens of thousands of different ML models on the Ximilar platform.
  • Model versions – You can train each of your models on different training data (part of the dataset) and mark it as a different version. Model versioning is great if you want to A/B test your ML model, tune your model performance, and for continuous model training.
  • Format of models – You can potentially train and save your ML models in various formats. For instance, .h5 which is a Keras/TensorFlow format or .pt (PyTorch) or .onnx for ONNX Runtime. Usually, each framework supports only specific formats.
  • The number of frameworks – Served ML models could be trained with different frameworks and their versions.
  • The number of the nodes (servers) – Models can be hosted on one or multiple servers and the serving system should be able to intelligently load balance the requests on servers so that none of them is throttled.
  • Models storage/registry – You need to store the ML models in some database or storage, such as AWS S3 or local storage
  • Speed/performance – The loading time of models from the storage can be critical and can cause a slow inference per sample.
  • Easy to use – Calling model via Rest API or gRPC requests, single-or-batch inference.
  • Hardware specification – ML models can be deployed on Edge devices or PCs with various architectures.
  • GPUs vs CPUs and libraries – Some models must be used only on CPUs and some require a GPU card.

Our Approach to the Machine Learning Model Serving

Several systems were developed to tackle these problems. Serving and deploying machine learning models has come a long way since we founded Ximilar in 2016. Back then, no system was capable of effectively serving hundreds of neural networks for inference.

So, we decided to build our own system for machine learning model serving, and today it forms the backbone of our machine-learning platform. As the use of AI becomes more widespread in companies, newer systems such as TensorFlow Serving emerge quickly to meet the increasing demand.

Which Framework Is The Best?

The Battle of Machine Learning Frameworks

Nowadays, each big tech company has their own solution for machine learning model serving and training. To name a few, PyTorch (TorchServe) and AITemplate by META (Facebook), TensorFlow (TFServing) by Google, ONNX runtime by Microsoft, Triton by NVIDIA, Multi-Model-Server by Amazon and many others like BentoML or Ray.

There are also tens of formats that you can save your ML model in, just TensorFlow alone is able to save into .h5, .pb, saved_model or .tflite formats, each of them serving a different purpose. For example, TensorFlow Lite is great for smartphones. It also loads very fast, so the availability of the model is great. However, it supports only limited operations and more modern architectures cannot be converted with it.

Machine learning model serving: each big tech company has their own solution for training and serving machine learning models.
Machine learning model serving: each big tech company has their own solution for training and serving machine learning models.

You can also try to convert models from PyTorch or TensorFlow to TensorRT and OpenVino formats. The conversion usually works with basic and most-used architectures. The TensorRT is great if you are deploying ML models on Jetson Nano or Xavier. You can achieve a boost in performance on Intel servers via OpenVino conversion or the Neural Magic library.

The ONNX Format

One notable thing is the ONNX format. The ONNX is not a library for training your machine learning models, ONNX is an open format for storing machine learning models. After the model training, for example, in TensorFlow, you can convert it to ONNX format. You are able to run this converted model via ONNX runtime on almost any platform, programming language, CPU architecture and with preferred hardware acceleration. Sometimes serving a model requires a specific version of libraries, which is why you can solve a lot of problems via ONNX.

Exploration is Key

There are a lot of options for ML model training, saving, conversion and deployment. Every library has its pros and cons, some of them are easy to use for training and development. Others, on the other hand, are specialized for specific platforms or for specific fields (computer vision, recommender systems or NLP).

I would recommend you invest some time in exploring all the frameworks and systems, before deciding which framework you would like to lock in. The competition is rough in this field and every company tries to be as innovative as possible to keep up with the others. Even a Chinese company Baidu developed their own solution called PaddlePaddle. At the end of the article, I will give some recommendations on which frameworks and serving systems you should use and when.

The Best Machine Learning Serving Tools

OK, let’s say that you trained your own model or downloaded one that has already been trained. Now you would like to deploy a machine-learning model in production. Here are a few options that you can try.

If you don’t know how to train a machine learning model, you can start with this tutorial by PyTorch.

Deploy ML Models With API

If you have one or a few models, you can build your own system for ML model serving. With Python and libraries such as Flask or Django, there is a straightforward way to develop a simple REST API. When the web service starts, it loads the model in the background and then every incoming request will call the model on the incoming data.

It could get problematic if you want to effectively work with GPU cards, and handle parallel requests. I would recommend packing the system to Docker and then running it in Kubernetes.

With Kubernetes, Docker and smart load-balancing as HAProxy such a system can potentially scale to bigger volumes. Java or Go languages are also good languages to deploy ML models.

Here is a simple tutorial with a sci-kit-learn model as REST API with Flask.

Now let’s have a look at the open-source serving systems that you can use out of the box, usually with a small piece of code or no code at all.

TensorFlow Serving

GitHub | Docs

TensorFlow Serving is a modern serving system for TensorFlow ML models. It’s a part of TensorFlow Extended developed by Google. The recommended way of using the system is via Docker.

Simply run the Docker pull TensorFlow/serving (optionally TensorFlow/serving:latest-gpu if you need GPU support) command. Just run the image via Docker:

docker run -p 8501:8501 
  --mount type=bind,source=/path/to/my_model/,target=/models/my_model 
  -e MODEL_NAME=my_model -t tensorflow/serving

Now that the system is serving your model, you can query with gRPC or REST calls. For more information, read the documentation. TensorFlow Serving works best with the SavedModel format. The model should define its signature_def_map which will define the inputs and outputs of the model. If you would like to dive into the system then my recommendation is videos by the team itself.

In my opinion, TensorFlow serving is great with simple models and just a few versions. The documentation, however, could be simpler. With advanced architectures, you will need to define the custom operations, which is a big disadvantage if you have a lot of models with more modern operations.

TorchServe

GitHub | Docs

TorchServe is a more modern system than TensorFlow Serving. The documentation is clean and supports basically everything that TF Serving does, however, this one is for PyTorch models. Before serving a PyTorch model via TorchServe, you need to convert them to .mar packages. Basically, the .mar package tells the model name, version, architecture and actual weights of the model. Installation and running are also possible via Docker, and it is very similar to TensorFlow Serving.

I personally like the management of the models, you are able to simply register new models by sending API requests, list models and query statistics. I find the TorchServe very simple to use. Both REST API and gRPC are available. If you are working with pure PyTorch models then the TorchServe is recommended way.

Triton

GitHub | Docs

Both of the serving systems mentioned above are tightly bound to the frameworks of the models they are able to serve. That is probably why Triton has a big advantage over them since it can serve both TensorFlow and PyTorch models. It is also able to serve OpenVINO, ONNX and TensorRT formats! That means it supports all the major formats in the machine learning field. Even though NVIDIA developed it, it doesn’t require a GPU card and can run also on CPUs.

To run Triton, simply pull it from the docker repository via the Docker pull nvcr.io/nvidia/tritonserver command. The triton servers are able to load models from a specific directory called model_repository. Each model is defined with configuration, in this configuration, there is a platform setting that defines a model format. For example, “tensorflow_graphdef” or “onnxruntime_onnx“. In this way, Triton knows how to run specific models.

The documentation is not super-easy to read (mostly GitHub README files) because it is in very active development. Otherwise, working with the models is similar to other serving systems, meaning calling models via gRPC or REST.

Ray Serve

GitHub | Docs

Ray is a general-purpose system for scaling machine learning workloads. It primarily focuses on model serving and providing the primitives for you to build your own ML platform on top.

Ray Serve offers a more Pythonic way of creating your own serving system. It is framework-agnostic and anything that can be run via Python can be run also with Ray. Basically, it looks as simple as Flask. You define the simple Python class for your model and decorate it with a route prefix handler. Then you just call the REST API request.

import requests
from starlette.requests import Request
from typing import Dict

from ray import serve

# 1: Define a Ray Serve deployment.
@serve.deployment(route_prefix="/")
class MyModelDeployment:
    def __init__(self, msg: str):
        # Initialize model state: could be very large neural net weights.
        self._msg = msg

    def __call__(self, request: Request) -> Dict:
        return {"result": self._msg}

# 2: Deploy the model.
serve.run(MyModelDeployment.bind(msg="Hello world!"))

# 3: Query the deployment and print the result.
print(requests.get("http://localhost:8000/").json())

If you want to have more control over the system, Ray is a great option. There is a Ray Clusters library which is able to deploy the system on your own Kubernetes Cluster, AWS or GCP with the ability to configure the autoscaling option.

MLflow

MLflow is an open-source platform for the whole ML lifecycle. From training to evaluation, deployment, tracking, model monitoring and central model registry.

MLflow offers a robust API and several language bindings for the whole management of the machine learning model’s lifecycle. There is also a UI for tracking your trained models. MLflow is really a mature package with a whole bundle of components that your team can use.

Other Useful Tools for Machine Learning Model Serving

  • Multi-Model-Server is a similar system to the previous ones. Developed by the Amazon AWS team, the system is able to run models trained with MXNet or converted via ONNX.
  • BentoML is a project very similar to MLflow. There are many different tools that data scientists can use for training and deployment processes. The UI looks a bit more modern. BentoML is also able to automatically generate Docker images for your models.
  • KServe is a simple system for managing and scaling models on your Kubernetes. It solves the deployment, and autoscaling and provides standardized inference protocol across ML frameworks.

Cloud Options of AWS, GCP and Azure

Of course, every big tech player provides cloud platforms to host and serve your machine learning models. Let’s have a quick look at a few examples.

Microsoft is a big supporter of ONNX, so with Azure Machine Learning services, you are able to deploy your models to the cloud via Python or Azure CLI. The process requires an entry script in Python with two methods: init for initialization of your model and run for inference. You can find the entire workflow in Azure development documentation.

The Google Cloud Platform (GCP) has good support for TensorFlow as it is their native framework. However, Docker deployment is available, so other frameworks can be used too. There are multiple ways to achieve the deployment. The classic way will be using the AI Platform prediction tool or Google Cloud Run. There is also a serverless HTTP endpoint/function, which serves your model stored in the Google Cloud Storage bucket. You define your function in Python with the prediction method and loading of the model.

Amazon Web Services (AWS) also contains multiple options for the ML deployment process and serving. The specialized system for machine learning is Amazon Sagemaker.

All the big platforms allow you to create your own virtual server instances. Create your Kubernetes clusters and use any of the systems/frameworks mentioned earlier. Nevertheless, you need to be very careful because it could get really pricey. There are also smaller players on the market such as Banana, Seldon and Comet ML for training, serving & deployment. I personally don’t have experience with them but they are becoming more popular.

Large Language (LLMs) and Multi-Modal Models in Production

With the introduction of GPT by OpenAI a new class of AI models was introduced – the large language models (LLMs). These models are extremely big, trained on massive datasets and deployed on an infrastructure that requires a whole datacenter to run. “Smaller” – usually open source version – models are released but they also require a lot of computational resources and modern servers to run smoothly.

Recently, several serving systems for these models were developed:

  • OpenLLM by BentoML is a nice system that supports almost all open-source models like Llama2. You can just pick one of the models and run the following commands to start with the serving and query the results:

openllm start opt
export OPENLLM_ENDPOINT=http://localhost:3000
openllm query 'Explain to me the difference between "further" and "farther"'
  • vLLM project is a Python library that can help you with the deployment of LLM as an API Server. What is great is that it supports OpenAI-Compatible Server, so you can switch from OpenAI paid service easily to open source variant without modifying the code on the client. This project is being developed at UC Berkeley and it is integrating new techniques for fast inferencing of LLMs.

  • SkyPilot – is a great option if you want to run the LLMs on cloud providers such as AWS, Google Cloud or Azure. Because running these models is costly, SkyPilot is able to pick the cheapest provider automatically and launch it as an endpoint.

Ximilar AI Platform

Free Login | Docs

Last but not least, you can use our codeless machine-learning platform. Instead of writing a lot of code, training and deploying an ML model by yourself, you can try it in the Ximilar App. Training image classification and object detection can be done both in the browser App or via API. There is every tool that you would need in the ML model development stage, such as training data/image management, labelling tools, evaluation of your models on testing and training datasets, performance metrics, explanation of models on specific images, and so on.

Ximilar’s computer vision platform enables you to develop AI-powered systems for image recognition, visual quality control, and more without knowledge of coding or machine learning. You can combine them as you wish and upgrade any of them anytime.

Once your model is trained, it is deployed as a REST API endpoint. It can be connected to a workflow of more machine learning models working together with conditions like if-else statements. The major benefit is you just connect your system to the API and query the results. All the training and serving problems are solved by us. In the end, you will save a lot of costs because you don’t need to own or rent your infrastructure, serving systems or specialized software engineering team on machine learning.

We built a Ximilar Platform so that businesses from e-commerce, healthcare, manufacturing, real estate and other areas could simply develop their own AI models without coding and with a reasonable budget. For example, on the following screen, you can see our task management for the trading cards collector community.

We and our customers use our platform for the training of machine learning models. Together with our own system for machine learning model serving is it an all-in-one solution for ML model deployment.
We and our customers use our platform for the training of machine learning models. Together with our own system for machine learning model serving is it an all-in-one solution for ML model deployment.

The great thing is that everything is manageable via REST API requests with JSON responses. Here is a simple curl command to query all models in production:

curl --request GET 
  --url https://api.ximilar.com/recognition/v2/task/ 
  --header 'Content-Type: application/json' 
  --header 'authorization: Token APITOKEN'

Deployment of ML Models is Science

There are a lot of systems that try to make deployment and serving easy. The topic of deployment & serving is broad, with many choices for hardware infrastructure, DevOps, programming languages, system development, costs, storage, and scaling. So it is not easy to pick one. If you would like to dig deeper, I would suggest the following content for further reading:

My Final Tips & Recommendations

Pick a good framework to start with

Doing machine learning for more than 10 years, my advice is to start by picking a good framework for model development. In my opinion, the best choice right now is PyTorch. Using it is easy and it supports a lot of state-of-the-art architectures.

I used to be a fan of TensorFlow for a long time, but over time, its developers were not able to integrate modern approaches. Also, the backward compatibility is often disrupted and the quality of code is getting worse which leads to more and more bugs in the framework.

Save your models in different formats

Second, save your models in different formats. I would also recommend using ONNX and OpenVino here. You never know when you will need it. This happened to me a few times. We needed to upgrade the server and systems (our production environment), but the new versions of libraries stopped supporting the specific format of the model, so we had to switch to a different one.

Pick a serving system suitable to your needs

If you are a small company, then Ray Serve is a good option. Bigger companies, on the other hand, have complex requirements for development and robust infrastructure. In this case, I would recommend picking more complex systems like MLFlow. If you would like to serve the models on the cloud, then look at a multi-model server. The choice is really based on the use case. If you don’t want to bother with all of this then try our Ximilar Platform, which is a solution model optimization, model validation, data storage and model deployment as API.

I will keep this article updated and if there is some new perspective serving system I will be more than happy to mention it here. After all, machine learning is about constant progress, and that is one of the things I like about it the most.

The post The Best Tools for Machine Learning Model Serving appeared first on Ximilar: Visual AI for Business.

]]>
AI Card Grading – Automate Sports Cards Pre-Grading https://www.ximilar.com/blog/ai-card-grading-automate-sports-cards-pre-grading/ Tue, 12 Sep 2023 11:20:08 +0000 https://www.ximilar.com/?p=14215 An in-depth look into AI card grading by Ximilar individually evaluating centering, edges, corners, and surface according to PSA or Beckett.

The post AI Card Grading – Automate Sports Cards Pre-Grading appeared first on Ximilar: Visual AI for Business.

]]>
In my last blog post, I wrote about our new artificial intelligence services for trading card identification. We created new API endpoints for both sports card recognition and slab reading, and similar solutions for trading card games (TCGs). Such solutions are great for analyzing and cataloguing a large card collection. I also briefly described our card grading endpoint, which was still in development at that time.

Today we are releasing three public API endpoints for evaluating card grade, centering and card condition with AI:

  • Card Grading – the most complex endpoint that evaluates corners, edges, surface and centering
  • Card Centering – computing just the centering of the card
  • Card Condition – simple API for getting condition of the card for marketplace (ebay) submission

In this blog post, I would like to get more in-depth about the AI card grading solution. How we built it, what are the pros and cons, how it is different from PSA grading or Beckett grading services, and how you can use it via REST API for your website or app.

AI Card Grading Services as API

With the latest advances in artificial intelligence, it is becoming increasingly common in our daily lives, and collectible cards are a field that doesn’t get left behind. A lot of startups are developing their own card grading, identification, scanning and documenting systems. Some of them were already successfully sold to big players like eBay or PSA. Just to mention a few:

To understand why card grading is so popular, let’s look at the standard grading process and how the industry works.

Standard Grading Process

Card grading has gained widespread popularity in the world of collectibles by offering a trusted way to assess trading cards to collectors. It’s a method that gives a fair and unbiased evaluation of a card’s condition, ensuring its authenticity and value. This appeals to both seasoned collectors who want to preserve their cards’ worth and newcomers looking to navigate the collectible market confidently.

The process involves sending cards to experts who carefully inspect them for qualities like centering, corners, edges, and surface. The standard grading process for trading cards involves these key steps:

  1. Submission: Collectors send their cards to grading companies.

  2. Authentication: Cards are checked for authenticity.

  3. Grading: Cards are assessed for condition and assigned a grade from 1 to 10 on a grading scale by an expert.

  4. Encapsulation: Graded cards are sealed in protective holders.

  5. Labelling & Certification: Labels with card details and grades are added. Cards’ information is recorded for verification. Special labels (such as fugitive ink, QR codes, or serial numbers) are introduced to prevent tampering.

  6. Return/Sale: Graded cards are returned to owners or sold for higher value.

Costs of Grading Services

The price for submitting cards and their grading depends on the company and the card. For example, the minimal grading price per card by PSA (Professional Sports Authenticator) is 15 USD, and it’s much more for more expensive cards.

You can pay hundreds of dollars if you have some rare baseball card from Topps or non-sports cards from Magic The Gathering or Yu-Gi-Oh! If your modern card collection contains hundreds of cards, the pricing can reach astronomical values. Of course, grading often makes the card’s value higher, depending on its condition and grade.

A typical collectible TCG card after the grading process. Some Pokémon cards can cost thousands of dollars, and the value is even higher after grading.

Pros And Cons of Classic Grading

Besides its costliness, classic grading has several other drawbacks:

  • It is a time-consuming offline process that is not particularly ideal for large-scale grading of whole collections.
  • Some grading companies would only grade cards with minimum submission value (declared value that is used for insurance).
  • Also, customers can usually submit only cards from popular series such as Pokémon, Magic The Gathering, Yu-Gi-Oh!, Sport Topps cards, and Sport Panini cards.

Of course, there are also advantages – like a physically sealed slab with a graded card, confirming its authenticity, and grading done by experts who can look at a card from all different angles and not just from a single image.

Nevertheless, there are a lot of steps involved in card grading, and the entire process takes a lot of time and effort. AI grading can help with the entire workflow, from authentication to grading and labelling.

Computer vision can easily and consistently spot printing defects, analyze corners and edges individually and compute centering in a matter of seconds and for a fraction of the price.

Introducing Online AI Card Grading REST API Service

Fast & Affordable AI Card Grading

Our intention is by no means to replace expert grading companies like PSA, BGS, SGC or CGC with AI-powered card grading. We would rather like it to be a faster, more consistent & cheaper alternative for anyone who needs bulk pre-grading of their collections.

One use case for our AI grading service is to use it to automate the estimation of the declared value of the card. A declared value is the estimated value of the collectible card after PSA has graded it (read PSA’s explanation here).

First, you will submit your card for grading by just sending the photo to our API. After obtaining a grade from our service, you can use our visual search system or card ID for a price guide. Actually, you will not only get the final grade of the card but a detailed grading breakdown (for edges, corners, centering, and surface). Then you can decide by yourself if you want to spend more money for physical grading or to sell it on eBay.

How Do We Train AI to Grade Cards?

To build an AI grading system powered by computer vision and machine learning techniques, we needed a lot of data that imitated real-world use cases (usually user-generated content such as smartphone pictures).

We manually destroyed some of our cards and intentionally used their tilted photos. We needed images imitating real-life pictures for annotation and training of machine learning models creating the AI card grading solution.

We spent a lot of time building our own dataset, including damaging our own cards. Our purpose from the beginning was to have a grader that would work both on sports cards and trading card games (TCGs), as well as images of different qualities and with different positioning of the cards.

AI Card Grader Consists of Several AI Models

Our card grading solution integrates a number of machine learning models trained on specific datasets. After you upload a photo of a card, the system needs to be able to correctly detect its position. It then identifies the type of the card: a sports card or a trading card game. Another recognition model identifies whether the picture shows the front or back of the card.

After localization & simple identification, the card gets an individual evaluation of its parts. We trained numerous models for individual grading of corners, edges, card surface, and centering, in accordance with grading standards such as PSA or Beckett.

Of course, different types of cards require a different approach, which is why, for example, we have two different models for corners. While sports cards should have sharp corners, TCG cards are typically more rounded.

From the individual grades, we compute a final grade with condition evaluation. Another model is identifying autographed cards. The cards with autographs are generally more valuable.

AI card grading of individual parts of the back of a sports card.

The big advantage is that the output of the card grading is easy to visualize. That is why we also provide a simple image with the report for each graded card. There you can see a detailed grading breakdown for every part of the card.

Limitations of AI and Machine Learning in Card Grading

Of course, both humans and AI can make mistakes. There are some limitations of the system. Estimating card grades from the images requires relatively high-resolution images, with good lighting conditions and with low post-processing.

As a matter of fact, a lot of modern cameras in smartphones are currently not very good at close-up photos. Their sensors have gotten bigger over the years, and their AI is upscaling the photos. This makes them artificially sharp with cartoon-like effects. This can of course corrupt the overall results. However, as I previously mentioned, that is why we train the models on real-life images and gradually improve their performance.

Let’s Get Some Cards Graded Via Our Online API

Modern Basketball Card

We can test our AI grader via Ximilar App. For this purpose, I chose one of the classic basketball cards of Michael Jordan. BGS (Beckett) gave this card a grade of 6 (EX-MT).

Our online grading system assigned this card a final grade of 6.5. The centering is quite off, so the system graded it 6/10. The grading is still not perfect, as it misses the surface by quite a large margin. However, the final grade is quite close to the one received by Beckett.

AI card grading and grade breakdown by Ximilar demonstrated on a classic basketball card with Michael Jordan.

In the breakdown image, you can see how the system evaluated individual parts of the card. The lines are drawn on the image, so you can see the details of individual grades for corners and edges. We hope that this brings more transparency to the algorithmic grading.

Vintage Baseball Card

Now let’s take a look at an image of a vintage sports card without an autograph. As an example, I chose the baseball card with Ed Mathews.

The final grade that the card receives is 6.0. The average corner value assigned by the system is 4.0 and edges are 7.0. The grade for the surface is 5.5 and the centering is 7.0 (left/right is 36/65 and top/bottom is 38/62).

AI card grading and its visualization by Ximilar with localization and centering.

We can take a look at the corners and think whether a professional grader would assign the same values. I personally think that the grade is reasonable. However, getting grades from a single image is hard. We’re also not trying to make the values precise up to decimals (e.g., 4.12453 for the upper left corner). We want this to be an affordable soft pre-grading solution.

Card corners are one of the reasons why pictures used for AI card grading should have as high resolution as possible.

Card corners are a bit blurry, so ideally, we would like to have a sharper image. However, we can see that the corners are not in the range of 7–10 grades but rather lower (4-6).

How Do We Compute the Final Grade?

We compute the final grade for corners and edges simply as an average of the individual values. We trained the centering grader according to the Beckett grading scale. It is in our opinion much better (has higher demands) than PSA in this case. So to get 10 points for centering, you need to have a 50/50 ratio – on top/bottom and left/right.

The good thing is, that since we provide values for all parts of the card, you don’t need to use our final grades. You can actually create and use your own formula for computing the final grade.

Card Centering API with AI

Some of our customers would like to compute just the centering of the card. That is why we publish also endpoint for this. It will return you offsets from left, right and top and bottom borders of the card. The offsets are relative and also absolute so you can visualize it in your application. Each API response contains image with visualized centering as part of the output:

Centering on Pokemon trading card game (tcg)
Computed centering of the Pokemon card.

Lightweight Grading, alias Card Condition Assessment

For customers that want to submit cards to online marketplaces and need to know just the condition of the card like Near Mint, Lightly Played, Heavily Played or Damaged we offer an additional endpoint for getting rough condition of your card. Because this endpoint (/v2/condition) is much simpler and also significantly cheaper than our /v2/grade endpoint. It’s great for a massive amount of data and suitable for collector shops all over the world. The API endpoint can be called from your application or we can write your own script that is able to analyze images/cards from Fujitsu scanners (Fujitsu FI-8170). If you also want to have a card identification service, our visual search AI can identify the TCGs like Pokemon, Magic The Gathering or Yugioh! with more than 98% accuracy.

You can ask to return the condition in several different formats like TCGPlayer, Ebay or our own.

Identification of card condition via Ximilar REST API endpoint with AI.
Identification of card condition via Ximilar REST API endpoint with AI.

The more about /v2/condition endpoint can be found in our documentation.

How You Can Test Ximilar Card Grader?

To test our online card grader API, you will need to log into the Ximilar App, where it is currently available to users of all plans for testing purposes. We are also currently working on a public demo.

The system is not perfect, neither is the real human grader. It will take us some time to develop something that will be near perfect and very stable. But I believe that we are on the right track to make AI-powered solutions in the collectibles industry more accessible and cheaper.

To Sum Up

The AI card grader is just one of many solutions by Ximilar that the collector community can use. Make sure to check out our AI Recognition of Collectibles. It is a universal service for the automated detection and recognition of all kinds of collectible items.

Automatic Recognition of Collectibles

Ximilar built an AI system for the detection, recognition and grading of collectibles. Check it out!

If you would like us to customize any solution for collectors, just contact us and we will get back to you. We created these solutions (Card Identification and Card Grading) to be the best publicly available AI tools for collectors.

The post AI Card Grading – Automate Sports Cards Pre-Grading appeared first on Ximilar: Visual AI for Business.

]]>
When OCR Meets ChatGPT AI in One API https://www.ximilar.com/blog/when-ocr-meets-chatgpt-ai-in-one-api/ Wed, 14 Jun 2023 09:38:27 +0000 https://www.ximilar.com/?p=13781 Introducing the fusion of optical character recognition (OCR) and conversational AI (ChatGPT) as an online REST API service.

The post When OCR Meets ChatGPT AI in One API appeared first on Ximilar: Visual AI for Business.

]]>
Imagine a world where machines not only have the ability to read text but also comprehend its meaning, just as effortlessly as we humans do. Over the past two years, we have witnessed extraordinary advancements in these areas, driven by two remarkable technologies: optical character recognition (OCR) and ChatGPT (generative pre-trained transformer). The combined potential of these technologies is enormous and offers assistance in numerous fields.

That is why we in Ximilar have recently developed an OCR system, integrated it with ChatGPT and made it available via API. It is one of the first publicly available services combining OCR software and the GPT model, supporting several alphabets and languages. In this article, I will provide an overview of what OCR and ChatGPT are, how they work, and – more importantly – how anyone can benefit from their combination.

What is Optical Character Recognition (OCR)?

OCR (Optical Character Recognition) is a technology that can quickly scan documents or images and extract text data from them. OCR engines are powered by artificial intelligence & machine learning. They use object detection, pattern recognition and feature extraction.

An OCR software can actually read not only printed but also handwritten text in an image or a document and provide you with extracted text information in a file format of your choosing.

How Optical Character Recognition Works?

When an OCR engine is provided with an image, it first detects the position of the text. Then, it uses AI model for reading individual characters to find out what the text in the scanned document says (text recognition).

This way, OCR tools can provide accurate information from virtually any kind of image file or document type. To name a few examples: PDF files containing camera images, scanned documents (e.g., legal documents), old printed documents such as historical newspapers, or even license plates.

A few examples of OCR: transcribing books to electronic form, reading invoices, passports, IDs and landmarks.
A few examples of OCR: transcribing books to electronic form, reading invoices, passports, IDs, and landmarks.

Most OCR tools are optimized for specific languages and alphabets. We can tune these tools in many ways. For example, to automate the reading of invoices, receipts, or contracts. They can also specialize in handwritten or printed paper documents.

The basic outputs from OCR tools are usually the extracted texts and their locations in the image. The data extracted with these tools can then serve various purposes, depending on your needs. From uploading the extracted text to simple Word documents to turning the recognized text to speech format for visually impaired users.

OCR programs can also do a layout analysis for transforming text into a table. Or they can integrate natural language processing (NLP) for further text analysis and extraction of named entities (NER). For example, identifying numbers, famous people or locations in the text, like ‘Albert Einstein’ or ‘Eiffel Tower’.

Technologies Related to OCR

You can also meet the term optical word recognition (OWR). This technology is not as widely used as the optical character recognition software. It involves the recognition and extraction of individual words or groups of words from an image.

There is also optical mark recognition (OMR). This technology can detect and interpret marks made on paper or other media. It can work together with OCR technology, for instance, to process and grade tests or surveys.

And last but not least, there is intelligent character recognition (ICR). It is a specific OCR optimised for the extraction of handwritten text from an image. All these advanced methods share some underlying principles.

What are GPT and ChatGPT?

Generative pre-trained transformer (GPT), is an AI text model that is able to generate textual outputs based on input (prompt). GPT models are large language models (LLMs) powered by deep learning and relying on neural networks. They are incredibly powerful tools and can do content creation (e.g., writing paragraphs of blog posts), proofreading and error fixing, explaining concepts & ideas, and much more.

The Impact of ChatGPT

ChatGPT introduced by OpenAI and Microsoft is an extension of the GPT model, which is further optimized for conversations. It has had a great impact on how we search, work with and process data.

GPT models are trained on huge amounts of textual data. So they have better knowledge than an average human being about many topics. In my case, ChatGPT has definitely better English writing & grammar skills than me. Here’s an example of ChatGPT explaining quantum computing:

ChatGPT model explaining quantum computing. [source: OpenAI]
ChatGPT model explaining quantum computing. [source: OpenAI]

It is no overstatement to say that the introduction of ChatGPT revolutionized data processing, analysis, search, and retrieval.

How Can OCR & GPT Be Combined For Smart Text Extraction

The combination of OCR with GPT models enables us to use this technology to its full potential. GPT can understand, analyze and edit textual inputs. That is why it is ideal for post-processing of the raw text data extracted from images with OCR technology. You can give the text to the GPT and ask simple questions such as “What are the items on the invoice and what is the invoice price?” and get an answer with the exact structure you need.

This was a very hard problem just a year ago, and a lot of companies were trying to build intelligent document-reading systems, investing millions of dollars in them. The large language models are really game changers and major time savers. It is great that they can be combined with other tools such as OCR and integrated into visual AI systems.

It can help us with many things, including extraction of essential information from images and putting them into text documents or JSON. And in the future, it can revolutionize search engines, and streamline automated text translation or entire workflows of document processing and archiving.

Examples of OCR Software & ChatGPT Working Together

So, now that we can combine computer vision and advanced natural language processing, let’s take a look at how we can use this technology to our advantage.

Reading, Processing and Mining Invoices From PDFs

One of the typical examples of OCR software is reading the data from invoices, receipts, or contracts from image-only PDFs (or other documents). Imagine a part of invoices and receipts your accounting department accepts are physical printed documents. You could scan the document, and instead of opening it in Adobe Acrobat and doing manual data entry (which is still a standard procedure in many accounting departments today), you would let the automated OCR system handle the rest.

Scanned documents can be automatically sent to the API from both computers and mobile phones. The visual AI needs only a few hundred milliseconds to process an image. Then you will get textual data with the desired structure in JSON or another format. You can easily integrate such technology into accounting systems and internal infrastructures to streamline invoice processing, payments or SKU numbers monitoring.

Receipt analysis via Ximilar OCR and OpenAI ChatGPT.
Receipt analysis via Ximilar OCR and OpenAI ChatGPT.

Trading Card Identifying & Reading Powered by AI

In recent years, the collector community for trading cards has grown significantly. This has been accompanied by the emergence of specialized collector websites, comparison platforms, and community forums. And with the increasing number of both cards and their collectors, there has been a parallel demand for automating the recognition and cataloguing collectibles from images.

Ximilar has been developing AI-powered solutions for some of the biggest collector websites on the market. And adding an OCR system was an ideal solution for data extraction from both cards and their graded slabs.

Automatic Recognition of Collectibles

Ximilar built an AI system for the detection, recognition and grading of collectibles. Check it out!

We developed an OCR system that extracts all text characters from both the card and its slab in the image. Then GPT processes these texts and provides structured information. For instance, the name of the player, the card, its grade and name of grading company, or labels from PSA.

Extracting text from the trading card via OCR and then using GPT prompt to get relevant information.
Extracting text from the trading card via OCR and then using GPT prompt to get relevant information.

Needless to say, we are pretty big fans of collectible cards ourselves. So we’ve been enjoying working on AI not only for sports cards but also for trading card games. We recently developed several solutions tuned specifically for the most popular trading card games such as Pokémon, Magic the Gathering or YuGiOh! and have been adding new features and games constantly. Do you like the idea of trading card recognition automation? See how it works in our public demo.

How Can I Use the OCR & GPT API On My Images or PDFs?

Our OCR software is publicly available via an online REST API. This is how you can use it:

  1. Log into Ximilar App

    • Get your free API TOKEN to connect to API – Once you sign up to Ximilar App, you will get a free API token, which allows your authentication. The API documentation is here to help you with the basic setup. You can connect it with any programming language and any platform like iOS or Android. We provide a simple Python SDK for calling the API.

    • You can also try the service directly in the App under Computer Vision Platform.

  2. For simple text extraction from your image, call the endpoint read.

    https://api.ximilar.com/ocr/v2/read
  3. For text extraction from an image and its post-processing with GPT, use the endpoint read_gpt. To get the results in a deserved structure, you will need to specify the prompt query along with your input images in the API request, and the system will return the results immediately.

    https://api.ximilar.com/ocr/v2/read_gpt
  4. The output is JSON with an ‘_ocr’ field. This dictionary contains texts that represent a list of polygons that encapsulate detected words and sentences in images. The full_text field contains all strings concatenated together. The API is returning also the language name (“lang_name”) and language code (“lang”; ISO 639-1). Here is an example:

    {
    "_url": "__URL_PATH_TO_IMAGE__
    "_ocr": {
    "texts": [
    {
    "polygon": [[53.0,76.0],[116.0,76.0],[116.0,94.0],[53.0,94.0]],
    "text": "MICKEY MANTLE",
    "prob": 0.9978849291801453
    },
    ...
    ],
    "full_text": "MICKEY MANTLE 1st Base Yankees",
    "lang_name": "english",
    "lang_code": "en
    }
    }

    Our OCR engine supports several alphabets (Latin, Chinese, Korean, Japanese and Cyrillic) and languages (English, German, Chinese, …).

Integrate the Combination of OCR and ChatGPT In Your System

All our solutions, including the combination of OCR & GPT, are available via API. Therefore, they can be easily integrated into your system, website, app, or infrastructure.

Here are some examples of up-to-date solutions that can easily be built on our platform and automate your workflows:

  • Detection, recognition & text extraction system – You can let the users of your website or app upload images of collectibles and get relevant information about them immediately. Once they take an image of the item, our system detects its position (and can mark it with a bounding box). Then, it recognizes their features (e.g., name of the card, collectible coin or comic book), extracts texts with OCR and you will get text data for your website (e.g., in a table format).

  • Card grade reading system – If your users upload images of graded cards or other collectibles, our system can detect everything including the grades and labels on the slabs in a matter of milliseconds.

  • Comic book recognition & search engine – You can extract all texts from each image of a comic book and automatically match it to your database for cataloguing.

  • Giving your collection or database of collectibles order – Imagine you have a website featuring a rich collection of collectible items, getting images from various sources and comparing their prices. The metadata can be quite inconsistent amongst source websites, or be absent in the case of user-generated content. AI can recognize, match, find and extract information from images based purely on computer vision and independent of any kind of metadata.

Let’s Build Your Solution

If you would like to learn more about how you can automate the workflows in your company, I recommend browsing our page All Solutions, where we briefly explained each solution. You can also check out pages such as Visual AI for Collectibles, or contact us right away to discuss your unique use case. If you’d like to learn more about how we work on customer projects step by step, go to How it Works.

Ximilar’s computer vision platform enables you to develop AI-powered systems for image recognition, visual quality control, and more without knowledge of coding or machine learning. You can combine them as you wish and upgrade any of them anytime.

Don’t forget to visit the free public demo to see how the basic services work. Your custom solution can be assembled from many individual services. This modular structure enables us to upgrade or change any piece anytime, while you save your money and time.

The post When OCR Meets ChatGPT AI in One API appeared first on Ximilar: Visual AI for Business.

]]>
Predict Values From Images With Image Regression https://www.ximilar.com/blog/predict-values-from-images-with-image-regression/ Wed, 22 Mar 2023 15:03:45 +0000 https://www.ximilar.com/?p=12666 With image regression, you can assess the quality of samples, grade collectible items or rate & rank real estate photos.

The post Predict Values From Images With Image Regression appeared first on Ximilar: Visual AI for Business.

]]>
We are excited to introduce the latest addition to Ximilar’s Computer Vision Platform. Our platform is a great tool for building image classification systems, and now it also includes image regression models. They enable you to extract values from images with accuracy and efficiency and save your labor costs.

Let’s take a look at what image regression is and how it works, including examples of the most common applications. More importantly, I will tell you how you can train your own regression system on a no-code computer vision platform. As more and more customers seek to extract information from pictures, this new feature is sure to provide Ximilar’s customers with the tools they need to stay ahead of the curve in today’s highly competitive AI-driven market.

What is the Difference Between Image Categorization and Regression?

Image recognition models are ideal for the recognition of images or objects in them, their categorization and tagging (labelling). Let’s say you want to recognize different types of car tyres or their patterns. In this case, categorization and tagging models would be suitable for assigning discrete features to images. However, if you want to predict any continuous value from a certain range, such as the level of tyre wear, image regression is the preferred approach.

Image regression is an advanced machine-learning technique that can predict continuous values within a specific range. Whenever you need to rate or evaluate a collection of images, an image regression system can be incredibly useful.

For instance, you can define a range of values, such as 0 to 5, where 0 is the worst and 5 is the best, and train an image regression task to predict the appropriate rating for given products. Such predictive systems are ideal for assigning values to several specific features within images. In this case, the system would provide you with highly accurate insights into the wear and tear of a particular tyre.

Predicting the level of tires worn out from the image is a use case for an image regression task, while a categorization task can recognize the pattern of the tire.
Predicting the level of tires worn out from the image is a use case for an image regression task, while a categorization task can recognize the pattern of the tyre.

How to Train Image Regression With a Computer Vision Platform?

Simply log in to Ximilar App and go to Categorization & Tagging. Upload your training pictures and under Tasks, click on Create a new task and create a Regression task.

Creating an image regression task in Ximilar App.

You can train regression tasks and test them via the same front end or with API. You can develop an AI prediction task for your photos with just a few clicks, without any coding or any knowledge of machine learning.

This way, you can create an automatic grading system able to analyze an image and provide a numerical output in the defined range.

Use the Same Training Data For All Your Image Classification Tasks

Both image recognition and image regression methods fall under the image classification techniques. That is why the whole process of working with regression is very similar to categorization & tagging models.

Working with image regression model on Ximilar computer vision platform.

Both technologies can work with the same datasets (training images), and inputs of various image sizes and types. In both cases, you can simply upload your data set to the platform, and after creating a task, label the pictures with appropriate continuous values, and then click on the Train button.

Apart from a machine learning platform, we offer a number of AI solutions that are field-tested and ready to use. Check out our public demos to see them in action.

If you would like to build your first image classification system on a no-code machine learning platform, I recommend checking out the article How to Build Your Own Image Recognition API. We defined the basic terms in the article How to Train Custom Image Classifier in 5 Minutes. We also made a basic video tutorial:

Tutorial: train your own image recognition model with Ximilar platform.

Neural Network: The Technology Behind Predicting Range Values on Images

The most simple technique for predicting float values is linear regression. This can be further extended to polynomial regression. These two statistical techniques are working great on tabular input data. However, when it comes to predicting numbers from images, a more advanced approach is required. That’s where neural networks come in. Mathematically said, neural network “f” can be trained to predict value “y” on picture “x”, or “y = f(x)”.

Neural networks can be thought of as approximations of functions that we aim to identify through the optimization on training data. The most commonly used NNs for image-based predictions are Convolutional Neural Networks (CNNs), visual transformers (VisT), or a combination of both. These powerful tools analyze pictures pixel by pixel, and learn relevant features and patterns that are essential for solving the problem at hand.

CNNs are particularly effective in picture analysis tasks. They are able to detect features at different spatial scales and orientations. Meanwhile, VisTs have been gaining popularity due to their ability to learn visual features without being constrained by spatial invariance. When used together, these techniques can provide a comprehensive approach to image-based predictions. We can use them to extract the most relevant information from images.

What Are the Most Common Applications of Value Regression From Images?

Estimating Age From Photos

Probably the most widely known use case of image regression by the public is age prediction. You can come across them on social media platforms and mobile apps, such as Facebook, Instagram, Snapchat, or Face App. They apply deep learning algorithms to predict a user’s age based on their facial features and other details.

While image recognition provides information on the object or person in the image, the regression system tells us a specific value – in this case, the person's age.
While image recognition provides information on the object or person in the image, the regression system tells us a specific value – in this case, the person’s age.

Needless to say, these plugins are not always correct and can sometimes produce biased results. Despite this limitation, various image regression models are gaining popularity on various social sites and in apps.

Ximilar already provides a face-detection solution. Models such as age prediction can be easily trained and deployed on our platform and integrated into your system.

Value Prediction and Rating of Real Estate Photos

Pictures play an essential part on real estate sites. When people are looking for a new home or investment, they are navigating through the feed mainly by visual features. With image regression, you are able to predict the state, quality, price, and overall rating of real estate from photos. This can help with both searching and evaluating real estate.

Predicting rating, and price (regression) for household images with image regression.
Predicting rating, and price (regression) for household images with image regression.

Custom recognition models are also great for the recognition & categorization of the features present in real estate photos. For example, you can determine whether a room is furnished, what type of room it is, and categorize the windows and floors based on their design.

Additionally, a regression can determine the quality or state of floors or walls, as well as rank the overall visual aesthetics of households. You can store all of this information in your database. Your users can then use such data to search for real estate that meets specific criteria.

Image classification systems such as image recognition and value regression are ideal for real estate ranking. Your visitors can search the database with the extracted data.
Image classification systems such as image recognition and value regression are ideal for real estate ranking. Your visitors can search the database with the extracted data.

Determining the Degree of Wear and Tear With AI

Visual AI is increasingly being used to estimate the condition of products in photos. While recognition systems can detect individual tears and surface defects, regression systems can estimate the overall degree of wear and tear of things.

A good example of an industry that has seen significant adoption of such technology is the insurance industry. For example, startups-like Lemonade Inc, or Root use AI when paying the insurance.

With custom image recognition and regression methods, it is now possible to automate the process of insurance claims. For instance, a visual AI system can indicate the seriousness of damage to cars after accidents or assess the wear and tear of various parts such as suspension, tires, or gearboxes. The same goes with other types of insurance, including households, appliances, or even collectible & antique items.

Our platform is commonly utilized to develop recognition and detection systems for visual quality control & defect detection. Read more in the article Visual AI Takes Quality Control to a New Level.

Automatic Grading of Antique & Collectible Items Such as Sports Cards

Apart from car insurance and damage inspection, recognition and regression are great for all types of grading and sorting systems, for instance on price comparators and marketplaces of collectible and antique items. Deep learning is ideal for the automatic visual grading of collector items such as comic books and trading cards.

By leveraging visual AI technology, companies can streamline their processes, reduce manual labor significantly, cut costs, and enhance the accuracy and reliability of their assessments, leading to greater customer satisfaction.

Automatic Recognition of Collectibles

Ximilar built an AI system for the detection, recognition and grading of collectibles. Check it out!

Food Quality Estimation With AI

Biotech, Med Tech, and Industry 4.0 also have a lot of applications for regression models. For example, they can estimate the approximate level of fruit & vegetable ripeness or freshness from a simple camera image.

The grading of vegetables by an image regression model.
The grading of vegetables by an image regression model.

For instance, this Japanese farmer is using deep learning for cucumber quality checks. Looking for quality control or estimation of size and other parameters of olives, fruits, or meat? You can easily create a system tailored to these use cases without coding on the Ximilar platform.

Build Custom Evaluation & Grading Systems With Ximilar

Ximilar provides a no-code visual AI platform accessible via App & API. You can log in and train your own visual AI without the need to know how to code or have expertise in deep learning techniques. It will take you just a few minutes to build a powerful AI model. Don’t hesitate to test it for free and let us know what you think!

Our developers and annotators are also able to build custom recognition and regression systems from scratch. We can help you with the training of the custom task and then with the deployment in production. Both custom and ready-to-use solutions can be used via API or even deployed offline.

The post Predict Values From Images With Image Regression appeared first on Ximilar: Visual AI for Business.

]]>
How to Build a Good Visual Search Engine? https://www.ximilar.com/blog/how-to-build-a-good-visual-search-engine/ Mon, 09 Jan 2023 14:08:28 +0000 https://www.ximilar.com/?p=12001 Let's take a closer look at the technology behind visual search and the key components of visual search engines.

The post How to Build a Good Visual Search Engine? appeared first on Ximilar: Visual AI for Business.

]]>
Visual search is one of the most-demanded computer vision solutions. Our team in Ximilar have been actively developing the best general multimedia visual search engine for retailers, startups, as well as bigger companies, who need to process a lot of images, video content, or 3D models.

However, a universal visual search solution is not the only thing that customers around the world will require in the future. Especially smaller companies and startups now more often look for custom or customizable visual search solutions for their sites & apps, built in a short time and for a reasonable price. What does creating a visual search engine actually look like? And can a visual search engine be built by anyone?

This article should provide a bit deeper insight into the technology behind visual search engines. I will describe the basic components of a visual search engine, analyze approaches to machine learning models and their training datasets, and share some ideas, training tips, and techniques that we use when creating visual search solutions. Those who do not wish to build a visual search from scratch can skip right to Building a Visual Search Engine on a Machine Learning Platform.

What Exactly Does a Visual Search Engine Mean?

The technology of visual search in general analyses the overall visual appearance of the image or a selected object in an image (typically a product), observing numerous features such as colours and their transitions, edges, patterns, or details. It is powered by AI trained specifically to understand the concept of similarity the way you perceive it.

In a narrow sense, the visual search usually refers to a process, in which a user uploads a photo, which is used as an image search query by a visual search engine. This engine in turn provides the user with either identical or similar items. You can find this technology under terms such as reverse image search, search by image, or simply photo & image search.

However, reverse image search is not the only use of visual search. The technology has numerous applications. It can search for near-duplicates, match duplicates, or recommend more or less similar images. All of these visual search tools can be used together in an all-in-one visual search engine, which helps internet users find, compare, match, and discover visual content.

And if you combine these visual search tools with other computer vision solutions, such as object detection, image recognition, or tagging services, you get a quite complex automated image-processing system. It will be able to identify images and objects in them and apply both keywords & image search queries to provide as relevant search results as possible.

Different computer vision systems can be combined on Ximilar platform via Flows. If you would like to know more, here’s an article about how Flows work.

Typical Visual Search Engines:
Google Lens & Pinterest Lens

Big visual search industry players such as Shutterstock, eBay, Pinterest (Pinterest Lens) or Google Images (Google Lens & Google Images) already implemented visual search engines, as well as other advanced, yet hidden algorithms to satisfy the increasing needs of online shoppers and searchers. It is predicted, that a majority of big companies will implement some form of soft AI in their everyday processes in the next few years.

The Algorithm for Training
Visual Similarity

The Components of a Visual Search Tool

Multimedia search engines are very powerful systems consisting of multiple parts. The first key component is storage (database). It wouldn’t be exactly economical to store the full sample (e.g., .jpg image or .mp4 video) in a database. That is why we do not store any visual data for visual search. Instead, we store just a representation of the image, called a visual hash.

The visual hash (also visual descriptor or embedding) is basically a vector, representing the data extracted from your image by the visual search. Each visual hash should be a unique combination of numbers to represent a single sample (image). These vectors also have some mathematical properties, meaning you can compare them, e.g., with cosine, hamming, or Euclidean distance.

So the basic principle of visual search is: the more similar the images are, the more similar will their vector representations be. Visual search engines such as Google Lens are able to compare incredible volumes of images (i.e., their visual hashes) to find the best match in a hundred milliseconds via smart indexing.

How to Create a Visual Hash?

The visual hashes can be extracted from images by standard algorithms such as PHASH. However, the era of big data gives us a much stronger model for vector representation – a neural network. A simple overview of the image search system built with a neural network can look like this:

Extracting visual vectors with the neural network and searching with them in a similarity collection.
Extracting visual vectors with the neural network and searching with them in a similarity collection.

This neural network was trained on images from a website selling cosmetics. Here, it extracted the embeddings (vectors), and they were stored in a database. Then, when a customer uploads an image to the visual search engine on the website, the neural network will extract the embedding vector from this image as well, and use it to find the most similar samples.

Of course, you could also store other metadata in the database, and do advanced filtering or add keyword search to the visual search.

Types of Neural Networks

There are several basic architectures of neural networks that are widely used for vector representations. You can encode almost anything with a neural network. The most common for images is a convolutional neural network (CNN).

There are also special architectures to encode words and text. Lately, so-called transformer neural networks are starting to be more popular for computer vision as well as for natural language processing (NLP). Transformers use a lot of new techniques developed in the last few years, such as an attention mechanism. The attention mechanism, as the name suggests, is able to focus only on the “interesting” parts of the image & ignore the unnecessary details.

Training the Similarity Model

There are multiple methods to train models (neural networks) for image search. First, we should know that training of machine learning models is based on your data and loss function (also called objective or optimization function).

Optimization Functions

The loss function usually computes the error between the output of the model and the ground truth (labels) of the data. This feature is used for adjusting the weights of a model. The model can be interpreted as a function and its weights as parameters of this function. Therefore, if the value of the loss function is big, you should adjust the weights of the model.

How it Works

The model is trained iteratively, taking subsamples of the dataset (batches of images) and going over the entire dataset multiple times. We call one such pass of the dataset an epoch. During one batch analysis, the model needs to compute the loss function value and adjust weights according to it. The algorithm for adjusting the weights of the model is called backpropagation. Training is usually finished when the loss function is not improving (minimizing) anymore.

We can divide the methods (based on loss function) depending on the data we have. Imagine that we have a dataset of images, and we know the class (category) of each image. Our optimization function (loss function) can use these classes to compute the error and modify the model.

The advantage of this approach is its simple implementation. It’s practically only a few lines in any modern framework like TensorFlow or PyTorch. However, it has also a big disadvantage: the class-level optimization functions don’t scale well with the number of classes. We could potentially have thousands of classes (e.g., there are thousands of fashion products and each product represents a class). The computation of such a function with thousands of classes/arguments can be slow. There could also be a problem with fitting everything on the GPU card.

Loss Function: A Few Tips

If you work with a lot of labels, I would recommend using a pair-based loss function instead of a class-based one. The pair-based function usually takes two or more samples from the same class (i.e., the same group or category). A model based on a pair-based loss function doesn’t need to output prediction for so many unique classes. Instead, it can process just a subsample of classes (groups) in each step. It doesn’t know exactly whether the image belongs to class 1 or 9999. But it knows that the two images are from the same class.

Images can be labelled manually or by a custom image recognition model. Read more about image recognition systems.

The Distance Between Vectors

The picture below shows the data in the so-called vector space before and after model optimization (training). In the vector space, each image (sample) is represented by its embedding (vector). Our vectors have two dimensions, x and y, so we can visualize them. The objective of model optimization is to learn the vector representation of images. The loss function is forcing the model to predict similar vectors for samples within the same class (group).

By similar vectors, I mean that the Euclidean distance between the two vectors is small. The larger the distance, the more different these images are. After the optimization, the model assigns a new vector to each sample. Ideally, the model should maximize the distance between images with different classes and minimize the distance between images of the same class.

How visual search engines work: Optimization for visual search should maximize the distance of items between different categories and minimize the distance within category.
Optimization for visual search should maximize the distance of items between different categories and minimize the distance within the category.

Sometimes we don’t know anything about our data in advance, meaning we do not have any metadata. In such cases, we need to use unsupervised or self-supervised learning, about which I will talk later in this article. Big tech companies do a lot of work with unsupervised learning. Special models are being developed for searching in databases. In research papers, this field is often called deep metric learning.

Supervised & Unsupervised Machine Learning Methods

1) Supervised Learning

As I mentioned, if we know the classes of images, the easiest way to train a neural network for vectors is to optimize it for the classification problem. This is a classic image recognition problem. The loss function is usually cross-entropy loss. In this way, the model is learning to predict predefined classes from input images. For example, to say whether the image contains a dog, a cat or a bird. We can get the vectors by removing the last classification layer of the model and getting the vectors from some intermediate layer of the network.

When it comes to the pair-based loss function, one of the oldest techniques for metric learning is the Siamese network (contrastive learning). The name contains “Siamese” because there are two identical models of the same weights. In the Siamese network, we need to have pairs of images, which we label based on whether they are or aren’t equal (i.e., from the same class or not). Pairs in the batch that are equal are labelled with 1 and unequal pairs with 0.

In the following image, we can see different batch construction methods that depend on our model: Siamese (contrastive) network, Triplet, or N-pair, which I will explain below.

How visual search engine works: Each deep learning architecture requires different batch construction methods. For example siames and npair requires tuples. However in Npair, the tuples must be unique.
Each deep learning architecture requires different batch construction methods. For example, Siamese and N-pair require tuples. However, in N-pair, the tuples must be unique.

Triplet Neural Network and Online/Offline Mining

In the Triplet method, we construct triplets of items, two of which (anchor and positive) belong to the same category and the third one (negative) to a different category. This can be harder than you might think because picking the “right” samples in the batch is critical. If you pick items that are too easy or too difficult, the network will converge (adjust weights) very slowly or not at all. The triplet loss function contains an important constant called margin. Margin defines what should be the minimum distance between positive and negative samples.

Picking the right samples in deep metric learning is called mining. We can find optimal triplets via either offline or online mining. The difference is, that during offline mining, you are finding the triplets at the beginning of each epoch.

Online & Offline Mining

The disadvantage of offline mining is that computing embeddings for each sample is not very computationally efficient. During the epoch, the model can change rapidly, so embeddings are becoming obsolete. That’s why online mining of triplets is more popular. In online mining, each batch of triplets is created before fitting the model. For more information about mining and batch strategies for triplet training, I would recommend this post.

We can visualize the Triplet model training in the following way. The model is copied three times, but it has the same shared weights. Each model takes one image from the triplet (anchor, positive, negative) and outputs the embedding vector. Then, the triplet loss is computed and weights are adjusted with backpropagation. After the training is done, the model weights are frozen and the output of the embeddings is used in the similarity engine. Because the three models have shared weights (the same), we take only one model that is used for predicting embedding vectors on images.

How visual search engines work: Triplet network that takes a batch of anchor, positive and negative images.
Triplet network that takes a batch of anchor, positive and negative images.

N-pair Models

The more modern approach is the N-pair model. The advantage of this model is that you don’t mine negative samples, as it is with a triplet network. The batch consists of just positive samples. The negative samples are mitigated through the matrix construction, where all non-diagonal items are negative samples.

You still need to do online mining. For example, you can select a batch with a maximum value of the loss function, or pick pairs that are distant in metric space.

How visual search engine works: N-pair model requires a unique pair of items. In triplet and Siamese model, your batch can contain multiple triplets/pairs from the same class (group).
The N-pair model requires a unique pair of items. In the triplet and Siamese model, your batch can contain multiple triplets/pairs from the same class (group).

In our experience, the N-pair model is much easier to fit, and the results are also better than with the triplet or Siamese model. You still need to do a lot of experiments and know how to tune other hyperparameters such as learning rate, batch size, or model architecture. However, you don’t need to work with the margin value in the loss function, as it is in triplet or Siamese. The small drawback is that during batch creation, we need to have always only two items per class/product.

Proxy-Based Methods

In the proxy-based methods (Proxy-Anchor, Proxy-NCA, Soft Triple) the model is trying to learn class representatives (proxies) from samples. Imagine that instead of having 10,000 classes of fashion products, we will have just 20 class representatives. The first representative will be used for shoes, the second for dresses, the third for shirts, the fourth for pants and so on.

A big advantage is that we don’t need to work with so many classes and the problems coming with it. The idea is to learn class representatives and instead of slow mining “the right samples” we can use the learned representatives in computing the loss function. This leads to much faster training & convergence of the model. This approach, as always, has some cons and questions like how many representatives should we use, and so on.

MultiSimilarity Loss

Finally, it is worth mentioning MultiSimilarity Loss, introduced in this paper. MultiSimilarity Loss is suitable in cases when you have more than two items per class (images per product). The authors of the paper are using 5 samples per class in a batch. MultiSimilarity can bring closer items within the same class and push the negative samples far away by effectively weighting informative pairs. It works with three types of similarities:

  • Self-Similarity (the distance between the negative sample and anchor)
  • Positive-Similarity (the relationship between positive pairs)
  • Negative-Similarity (the relationship between negative pairs)

Finally, it is also worth noting, that in fact, you don’t need to use only one loss function, but you can combine multiple loss functions. For example, you can use the Triplet Loss function with CrossEntropy and MultiSimilarity or N-pair together with Angular Loss. This should often lead to better results than the standalone loss function.

2) Unsupervised Learning

AutoEncoder

Unsupervised learning is helpful when we have a completely unlabelled dataset, meaning we don’t know the classes of our images. These methods are very interesting because the annotation of data can be very expensive and time-consuming. The most simplistic unsupervised learning can simply use some form of AutoEncoder.

AutoEncoder is a neural network consisting of two parts: an encoder, which encodes the image to the smaller representation (embedding vector), and a decoder, which is trying to reconstruct the original image from the embedding vector.

After the whole model is trained, and the decoder is able to reconstruct the images from smaller vectors, the decoder part is discarded and only the encoder part is used in similarity search engines.

How visual search engine works: Simple AutoEncoder neural network for learning embeddings via reconstruction of image.
Simple AutoEncoder neural network for learning embeddings via reconstruction of the image.

There are many other solutions for unsupervised learning. For example, we can train AutoEncoder architecture to colourize images. In this technique, the input image has no colour and the decoding part of the network tries to output a colourful image.

Image Inpainting

Another technique is Image Inpainting, where we remove part of the image and the model will learn to inpaint them back. Interesting way to propose a model that is solving jigsaw puzzles or correct ordering of frames of a video.

Then there are more advanced unsupervised models like SimCLR, MoCo, PIRL, SimSiam or GAN architectures. All these models try to internally represent images so their outputs (vectors) can be used in visual search systems. The explanation of these models is beyond this article.

Tips for Training Deep Metric Models

Here are some useful tips for training deep metric learning models:

  • Batch size plays an important role in deep metric learning. Some methods such as N-pair should have bigger batch sizes. Bigger batch sizes generally lead to better results, however, they also require more memory on the GPU card.
  • If your dataset has a bigger variation and a lot of classes, use a bigger batch size for Multi-similarity loss.
  • The most important part of metric learning is your data. It’s a pity that most research, as well as articles, focus only on models and methods. If you have a large collection with a lot of products, it is important to have a lot of samples per product. If you have fewer classes, try to use some unsupervised method or cross-entropy loss and do heavy augmentations. In the next section, we will look at data in more depth.
  • Try to start with a pre-trained model and tune the learning rate.
  • When using Siamese or Triplet training, try to play with the margin term, all the modern frameworks will allow you to change it (make it harder) during the training.
  • Don’t forget to normalize the output of the embedding if the loss function requires it. Because we are comparing vectors, they should be normalized in a way that the norm of the vectors is always 1. This way, we are able to compute Euclidean or cosine distances.
  • Use advanced methods such as MultiSimilarity with big batch size. If you use Siamese, Triplet, or N-pair, mining of negatives or positives is essential. Start with easier samples at the beginning and increase the challenging samples every epoch.

Neural Text Search on Images with CLIP

Up to right now, we were talking purely about images and searching images with image queries. However, a common use case is to search the collection of images with text input, like we are doing with Google or Bing search. This is also called Text-to-Image problem, because we need to transform text representation to the same representation as images (same vector space). Luckily, researchers from OpenAI develop a simple yet powerful architecture called CLIP (Contrastive Language Image Pre-training). The concept is simple, instead of training on pair of images (SIAMESE, NPAIR) we are training two models (one for image and one for text) on pairs of images and texts.

The architecture of CLIP model by OpenAI. Image Source Github

You can train a CLIP model on a dataset and then use it on your images (or videos) collection. You are able to find similar images/products or try to search your database with a text query. If you would like to use a CLIP-like model on your data, we can help you with the development and integration of the search system. Just contact us at care@ximilar.com, and we can create a search system for your data.

The Training Data
for Visual Search Engines

99 % of the deep learning models have a very expensive requirement: data. Data should not contain any errors such as wrong labels, and we should have a lot of them. However, obtaining enough samples can be a problematic and time-consuming process. That is why techniques such as transfer learning or image augmentation are widely used to enrich the datasets.

How Does Image Augmentation Help With Training Datasets?

Image augmentation is a technique allowing you to multiply training images and therefore expand your dataset. When preparing your dataset, proper image augmentation is crucial. Each specific category of data requires unique augmentation settings for the visual search engine to work properly. Let’s say you want to build a fashion visual search engine based strictly on patterns and not the colours of items. Then you should probably employ heavy colour distortion and channel-swapping augmentation (randomly swapping red, green, or blue channels of an image).

On the other hand, when building an image search engine for a shop with coins, you can rotate the images and flip them to left-right and upside-down. But what to do if the classic augmentations are not enough? We have a few more options.

Removing or Replacing Background

Most of the models that are used for image search require pairs of different images of the same object. Typically, when training product image search, we use an official product photo from a retail site and another picture from a smartphone, such as a real-life photo or a screenshot. This way, we get a pair-based model that understands the similarity of a product in pictures with different backgrounds, lights, or colours.

How visual search engine works: The difference between a product photo and a real-life image made with a smartphone, both of which are important to use when training computer vision models.
The difference between a product photo and a real-life image made with a smartphone, both of which are important to use when training computer vision models.

All such photos of the same product belong to an entity which we call a Similarity Group. This way, we can build an interactive tool for your website or app, which enables users to upload a real-life picture (sample) and find the product they are interested in.

Background Removal Solution

Sometimes, obtaining multiple images of the same group can be impossible. We found a way to tackle this issue by developing a background removal model that can distinguish the dominant foreground object from its background and detect its pixel-accurate position.

Once we know the exact location of the object, we can generate new photos of products with different backgrounds, making the training of the model more effective with just a few images.

The background removal can also be used to narrow the area of augmentation only to the dominant item, ignoring the background of the image. There are a lot of ways to get the original product in different styles, including changing saturation, exposure, highlights and shadows, or changing the colours entirely.

How visual search engines work: Generating more variants can make your model very robust.
Generating more variants can make your model very robust.

Building such an augmentation pipeline with background/foreground augmentation can take hundreds of hours and a lot of GPU resources. That is why we deployed our Background Removal solution as a ready-to-use image tool.

You can use the Background Removal as a stand-alone service for your image collections, or as a tool for training data augmentation. It is available in public demo, App, and via API.

GAN-Based Methods for Generating New Training Data

One of the modern approaches is to use a Generative Adversarial Network (GAN). GANs are incredibly powerful in generating whole new images from some specific domain. You can simply create a model for generating new kinds of insects or making birds with different textures.

How visual search engines work: Creating new insect images automatically to train an image recognition system? How cool is that? There are endless possibilities with GAN models for basicaly any image type. [Source]
Creating new insect images automatically to train an image recognition system? How cool is that? There are endless possibilities with GAN models for basically any image type. [Source]

The greatest advantage of GAN is you will easily get a lot of new variants, which will make your model very robust. GANs are starting to be widely used in more tasks such as simulations, and I think the gathering of data will cost much less in the near future because of them. In Ximilar, we used GAN to create a GAN Image Upscaler, which adds new relevant pixels to images to increase their resolution and quality.

When creating a visual search system on our platform, our team picks the most suitable neural network architecture, loss functions, and image augmentation settings through the analysis of your visual data and goals. All of these are critical for the optimization of a model and the final accuracy of the system. Some architectures are more suitable for specific problems like OCR systems, fashion recommenders or quality control. The same goes with image augmentation, choosing the wrong settings can destroy the optimization. We have experience with selecting the best tools to solve specific problems.

Annotation System for Building Image Search Datasets

As we can see, a good dataset definitely is one of the key elements for training deep learning models. Obtaining such a collection can be quite expensive and time-consuming. With some of our customers, we build a system that continually gathers the images needed in the training datasets (for instance, through a smartphone app). This feature continually & automatically improves the precision of the deployed search engines.

How does it work? When the new images are uploaded to Ximilar Platform (through Custom Similarity service) either via App or API, our annotators can check them and use them to enhance the training dataset in Annotate, our interface dedicated to image annotation & management of datasets for computer vision systems.

Annotate effectively works with the similarity groups by grouping all images of the same item. The annotator can add the image to a group with the relevant Stock Keeping Unit (SKU), label it as either a product picture or a real-life photo, add some tags, or mark objects in the picture. They can also mark images that should be used for the evaluation and not used in the training process. In this way, you can have two separate datasets, one for training and one for evaluation.

We are quite proud of all the capabilities of Annotate, such as quality control, team cooperation, or API connection. There are not many web-based data annotation apps where you can effectively build datasets for visual search, object detection, as well as image recognition, and which are connected to a whole visual AI platform based on computer vision.

A sneak peek into Annotate – image annotation tool for building visual search and image similarity models.
Image annotation tool for building visual search and image similarity models.

How to Improve Visual Search Engine Results?

We already assessed that the optimization algorithm and the training dataset are key elements in training your similarity model. And that having multiple images per product then significantly increases the quality of the trained similarity model. The model (CNN or other modern architecture) for similarity is used for embedding (vector) extraction, which determines the quality of image search.

Over the years that we’ve been training visual search engines for various customers around the world, we were also able to identify several potential weak spots. Their fixing really helped with the performance of searches as well as the relevance of the search results. Let’s take a look at what can improve your visual search engine:

Include Tags

Adding relevant keywords for every image can improve the search results dramatically. We recommend using some basic words that are not synonymous with each other. The wrong keywords for one item are for instance “sky, skyline, cloud, cloudy, building, skyscraper, tall building, a city”, while the good alternative keywords would be “sky, cloud, skyscraper, city”.

Our engine can internally use these tags and improve the search results. You can let an image recognition system label the images instead of adding the keywords manually.

Include Filtering Categories

You can store the main categories of images in their metadata. For instance, in real estate, you can distinguish photos that were taken inside or outside. Based on this, the searchers can filter the search results and improve the quality of the searches. This can also be easily done by an image recognition task.

Include Dominant Colours

Colour analysis is very important, especially when working for a fashion or home decor shop. We built a tool conveniently called Dominant Colors, with several extraction options. The system can extract the main colours of a product while ignoring its background. Searchers can use the colours for advanced filtering.

Use Object Detection & Segmentation

Object detection can help you focus the view of both the search engine and its user on the product, by merely cutting the detected object from the image. You can also apply background removal to search & showcase the products the way you want. For training object detection and other custom image recognition models, you can use our AppAnnotate.

Use Optical Character Recognition (OCR)

In some domains, you can have products with text. For instance, wine bottles or skincare products with the name of the item and other text labels that can be read by artificial intelligence, stored as metadata and used for keyword search on your site.

How visual search engines work: Our visual search engine allows us to combine several features for multimedia search with advanced filtering.
Our visual search engine allows us to combine several features for multimedia search with advanced filtering.

Improve Image Resolution

If the uploaded images from the mobile phones have low resolution, you can use the image upscaler to increase the resolution of the image, screenshot, or video. This way, you will get as much as possible even from user-generated content with potentially lower quality.

Combine Multiple Approaches

FusionCombining multiple features like model embeddings, tags, dominant colours, and text increases your chances to build a solid visual search engine. Our system is able to use these different modalities and return the best items accordingly. For example, extracting dominant colours is really helpful in Fashion Search, our service combining object detection, fashion taggingvisual search.

Search Engine and Vector Databases

Once you trained your model (neural network), you can extract and store the embeddings for your multimedia items somewhere. There are a lot of image search engine implementations that are able to work with vectors (embedding representation) that you can use. For example, Annoy from Spotify or FAISS from Facebook developers.

These solutions are open-source (i.e. you don’t have to deal with usage rights) and you can use them for simple solutions. However, they also have a few disadvantages:

  • After the initial build of the search engine database, you cannot perform any update, insert or delete operations. Once you store the data, you can only perform search queries.
  • You are unable to use a combination of multiple features, such as tags, colours, or metadata.
  • There’s no support for advanced filtering for more precise results.
  • You need to have an IT background and coding skills to implement and use them. And in the end, the system must be deployed on some server, which brings additional challenges.
  • It is difficult to extend them for advanced use cases, you will need to learn a complex codebase of the project and adjust it accordingly.

Building a Visual Search Engine on a Machine Learning Platform

The creation of a great visual search engine is not an easy task. The mentioned challenges and disadvantages of building complex visual search engines with high performance are the reasons why a lot of companies hesitate to dedicate their time and funds to building them from scratch. That is where AI platforms like Ximilar come into play.

Custom Similarity Service

Ximilar provides a computer vision platform, where a fast similarity engine is available as a service. Anyone can connect via API and fill their custom collection with data and query at the same time. This streamlines the tedious workflow a lot, enabling people to have custom visual search engines fast and, more importantly, without coding. Our image search engines can handle other data types like videos, music, or 3D models. If you want more privacy for your data, the system can also be deployed on your hardware infrastructure.

In all industries, it is important to know what we need from our model and optimize it towards the defined goal. We developed our visual search services with this in mind. You can simply define your data and problem and what should be the primary goal for this similarity. This is done via similarity groups, where you put the items that should be matched together.

Examples of Visual Search Solutions for Business

One of the typical industries that use visual search extensively is fashion. Here, you can look at similarities in multiple ways. For instance, one can simply want to find footwear with a colour, pattern, texture, or shape similar to the product in a screenshot. We built several visual search engines for fashion e-shops and especially price comparators, which combined search by photo and recommendations of alternative similar products.

Based on a long experience with visual search solutions, we deployed several ready-to-use services for visual search: Visual Product Search, a complex visual search service for e-commerce including technologies such as search by photo, similar product recommendations, or image matching, and Fashion Search created specifically for the fashion segment.

Another nice use case is also the story of how we built a Pokémon Trading Card search engine. It is no surprise that computer vision has been recently widely applied in the world of collectibles. Trading card games, sports cards or stamps and visual AI are a perfect match. Based on our customers’ demand, we also created several AI solutions specifically for collectibles.

The Workflow of Building
a Visual Search Engine

If you are looking to build a custom search engine for your users, we can develop a solution for you, using our service Custom Image Similarity. This is the typical workflow of our team when working on a customized search service:

  1. SetupResearch & Plan – Initial calls, the definition of the project, NDA, and agreement on expected delivery time.

  2. Data – If you don’t provide any data, we will gather it for you. Gathering and curating datasets is the most important part of developing machine learning models. Having a well-balanced dataset without any bias to any class leads to great performance in production.

  3. First prototype – Our machine learning team will start working on the model and collection. You will be able to see the first results within a month. You can test it and evaluate it by yourself via our clickable front end.

  4. Development – Once you are satisfied with the results, we will gather more data and do more experiments with the models. This is an iterative way of improving the model.

  5. Evaluation & Deployment – If the system performs well and meets the criteria set up in the first calls (mostly some evaluation on the test dataset and speed performance), we work on the deployment. We will show you how to connect and work with the API for visual similarity (insert, delete, search endpoints).

If you are interested in knowing more about how the cooperation with Ximilar works in general, read our How it works and contact us anytime.

We are also able to do a lot of additional steps, such as:

  • Managing and gathering more training data continually after the deployment to gradually increase the performance of visual similarity (the usage rights for user-generated content are up to you; keep in mind that we don’t store any physical images).
  • Building a customized model or multiple models that can be integrated into the search engine.
  • Creating & maintaining your visual search collection, with automatic synchronization to always keep up to date with your current stock.
  • Scaling the service to hundreds of requests per second.

Visual Search is Not Only
For the Big Companies

I presented the basic techniques and architectures for training visual similarity models, but of course, there are much more advanced models and the research of this field continues with mile steps.

Search engines are practically everywhere. It all started with AltaVista in 1995 and Google in 1998. Now it’s more common to get information directly from Siri or Alexa. Searching for things with visual information is just another step, and we are glad that we can give our clients tools to maximise their potential. Ximilar has a lot of technical experience with advanced search technology for multimedia data, and we work hard to make it accessible to everyone, including small and medium companies.

If you are considering implementing visual search into your system:

  1. Schedule a call with us and we will discuss your goals. We will set up a process for getting the training data that are necessary to train your machine learning model for search engines.

  2. In the following weeks, our machine learning team will train a custom model and a testable search collection for you.

  3. After meeting all the requirements from the POC, we will deploy the system to production, and you can connect to it via Rest API.

The post How to Build a Good Visual Search Engine? appeared first on Ximilar: Visual AI for Business.

]]>
Pokémon TCG Search Engine: Use AI to Catch Them All https://www.ximilar.com/blog/pokemon-card-image-search-engine/ Tue, 11 Oct 2022 12:20:00 +0000 https://www.ximilar.com/?p=4551 With a new custom image similarity service, we are able to build an image search engine for collectible cards trading.

The post Pokémon TCG Search Engine: Use AI to Catch Them All appeared first on Ximilar: Visual AI for Business.

]]>
Have you played any trading card games? As an elementary school student, I remember spending hundreds of hours playing Lord of the Rings TCG with my friend. Back then, LOTR was in the cinemas, and the game was simply fantastic, with beautiful pictures from movies. I still remember my deck, played with a combination of Ents/Gondor and Nazguls.

Other people in our office spent their youth playing Magic The Gathering (with beautiful artworks), or collecting sports cards with their favorite athletes. In my country, basketball cards and ice hockey cards were really popular. Cards are still loved, played, collected, and traded by geeks, collectors, and sports fans across the world! Their market is growing, and so is the need for automation of image processing on websites and apps for collectors. Right now, cards can be seen even as a great investment.

Where can you use visual AI for cards?

Trading card games (トレーディングカード) can consist of tens of thousands of cards. In principle, building a basic image classifier based solely on image recognition leads to low precision and is simply not enough for more complicated problems.

However, we are able to build a complex similarity system that can recognize, categorize, and find similar cards by a picture. Once trained properly, it can deal with enormous databases of images it never encountered before. With this system, you can find all the information, such as the year of release, card title, exact value, card set, or whether it already is in someone’s collection, with just a smartphone image of the card.

Tip: Check out our Computer Vision Platform to learn about how basic image recognition systems work. If you are not sure how to develop your card search system, just contact us and we will help you.

Collectibles are a big business and some cards are really expensive nowadays. Who knows, maybe you have the card of Charizard or Kobe Bryant hidden in your old box in the attic. We can develop a system for you that can automatically analyze the bulk of trading cards sent from your customers or integrate it into your mobile/smartphone app.

Automatic Recognition of Collectibles

Ximilar built an AI system for the detection, recognition and grading of collectibles. Check it out!

What can visual search do for the trading cards market?

In the last year, we have been building a universal system able to train visual models with numerous applications in image search engines. We already offer visual search services for photo search. But, they are optimized mostly for general and fashion images. This system can be tuned to trading cards, coins, furniture & home decor, arts, and real estate, … there are infinite use cases.

In the last decades, we have all witnessed the growth of the TCG community. However, technologies based on artificial intelligence have not yet been used in this market. Plus, even though the first system for scanning trading cards was released by ebay.com, it was not made available for small shops as an API. And since trading card games and visual AI are a perfect match, we are going to change itwith a card image search.

Tip: Check out Visual Product Search to learn more about visual search applications.

Which TCG cards could visual AI help with?

An image search engine is a great approach when the number of classes for the image classification is high (above 1,000+). With TCGs, each card represents a unique class. A convolutional neural network (CNN) trained as a classifier can have poor results when working with a larger number of classes.

Pokémon TCG contains more than 10,000 cards (classes), Magic the Gathering (MTG) over 50.000, and the same goes for basketball or any other sports cards. So basically, we can build a visual search system for both:

  • Trading card games (Magic the Gathering, Lord of the Rings, Pokémon, Yu-Gi-Oh!, One Piece, Warhammer, and so on)
  • Collectible sports cards (like Ice Hockey, Football, Soccer, Baseball, Basketball, UFC, and more)
Pokémon, Magic The Gathering, LOTR, Ice Hockey and Basketball cards.
Pokémon, Magic The Gathering, LOTR, Ice Hockey, and Basketball cards.
Yes, we are big fans of all these things 🙂

A visual search/recognition technology is starting to be used on E-bay when listing trading and sports cards for sale. However, this is only available in the e-bay app on smartphones. The app has a built-in scanning tool for cards and can find the average price with additional info.

Our service for card image search can be integrated into your website or application. And you can simply connect via API through a smartphone, computer, or sorting machine to find exact cards by photo, saving a lot of time and improving the user experience!

We’ve been recently training an AI (neural network) model for Pokémon trading cards, Yugioh! and Magic The Gathering. Why these? Pokémon is the most played TCG in the world, the game has simple rules and an enormous fan base. Very popular are also MTG and Yugioh! Some cards are really expensive, but more importantly, they are traded heavily!

With this model, we built a reverse search for finding the exact Pokémon card, MTG and Yugioh! cards, which achieved 94%+ accuracy (i.e. exact image match). And we are still talking about a prototype in beta version that can be improved to almost 100 %. This search system can return you the edition of the card, language, name of the card, year of release and much more.

If you would like to try the system on these three trading card games, then the endpoint for card identification (/v2/tcg_id) from the Collectibles Recognition service is the right choice for you. If you need to tune it on your image collections or have any other games or cards (sports) then just contact us and we can build a similar service for you.

Automatic grading and inspection of cards with AI

A lot of companies are grading sports & trading cards manually. Our visual AI can be trained to detect corner types, scratches, surface wear, light staining, creases, focus, and borders. The Image recognition models are able to identify marks, wrong cut, lopsided centering, print defects and other special attributes.

For example, PSA is a company that has developed its own grading standards for automatic card grading (MINT). With our platform and team, you can automatize the entire workflow of grading with just one photo. We provide several solutions for computing card grades and card condition.

PSA graded baseball card. Our machine learning model can analyze picture of these cards.
PSA graded baseball card. Automatic grading is possible with machine learning.

With the new custom similarity service, we are able to create a custom solution for trading card image search in a matter of weeks. The process for developing it is quite simple:

  1. We will schedule a call and talk about your goals. We will agree on how we will obtain the training data that are necessary to train your custom machine-learning model for the search engine.
  2. Our machine-learning specialists will assemble a testable image search collection and train a custom machine-learning model for you in a matter of weeks.
  3. After meeting all the requirements of PoC, we will deploy the system to production, and you can connect to it via Rest API.

Image Recognition of Collectibles

Machine learning models bring endless possibilities not only to pop culture geeks and collectors, but to all fields and industries. From personalized recommendations in custom fashion search engines to automatic detection of slight differences in surface materials, the visual AI gets better and smarter every day, making routine tasks a matter of milliseconds. That is one of the reasons why it is an unlimited resource of curiosity, challenges, and joy for us, including being geeks – professionally :).

Ximilar is currently releasing on a ready-to-use computer vision service able to recognize collectibles such as TCG cards, coins, banknotes or post stamps, detect their features and categorize them. Let us know if you’d like to implement it on your website!

If you are interested in a customized AI solution for collector items write us an email and we will get back to you as soon as possible. If you would like to identify cards with our Collectibles Recognition service just sign up via app.ximilar.com.

The post Pokémon TCG Search Engine: Use AI to Catch Them All appeared first on Ximilar: Visual AI for Business.

]]>
Image Upscaler: API for Super-Resolution Image Enhancing https://www.ximilar.com/blog/image-upscaler-api-for-super-resolution-image-enhancing/ Tue, 31 May 2022 13:04:21 +0000 https://www.ximilar.com/?p=7487 Enhance your images' resolution without losing quality with a powerful Image Upscaler based on visual AI.

The post Image Upscaler: API for Super-Resolution Image Enhancing appeared first on Ximilar: Visual AI for Business.

]]>
Websites based on visual content from various sources often struggle with the low resolution of their images. Ximilar created Image Upscaler – a new image upscaling tool, based on a smart enhancing algorithm, which is able to upscale the image up to 8x. It is one of the most affordable solutions on the market, which can be both integrated into image processing systems and used separately.

When Visual Content Matters

About 90 % of information transmitted to the human brain is visual. There is no doubt that humans are fixated on visual information, with images and videos being the most popular content on the internet. According to Internet Live Stats, every second, more than 1 000 pictures are uploaded to Instagram and almost 100k videos are played on YouTube.

To increase the traffic & conversions, you need to make your site and content as visually appealing as possible.

The more people love using and consuming visual content online, the more important visual merchandising gets. It is clear that if you want to increase the traffic and conversions on your website, you need to make your site and content as visually appealing as possible.

How Does Image Upscaling Work?

Image upscaling, or image enhancement, is a process in which images are enriched with more pixels to get a higher resolution. During this process, the image is divided into segments which are upscaled separately and then put back together. So, for example, during the 4x upscaling, the 64 x 64px segments turn into 256 x 256px.

The pixel multiplication is enabled by AI, using the techniques of deep learning and computer vision. During the training, the neural network learns how to divide each pixel into multiple pixels based on its surroundings. Some image enhancing techniques also involve generative modelling, which generates new information to make the modified image look convincing.

A Few Image Upscaling Examples

Image upscaling: photo of lake and mountains.

Super-resolution upscaling makes the edges and colour transitions smoother. When you find a perfect stock photo, you can increase the resolution by adding 2x, 4x, or 8x more pixels to the image.

Upscal
Image upscaling: product photo of watch.

Sometimes, the smallest changes to the image make the biggest difference. The upscaled images provide the feeling of greater depth and more details, and leave a better impression.

Image upscaling: photo of a fashion model.

Where is The Image Enhancement the Most Needed?

Stock Photo Databases

The competition in the stock image market is enormous. Nowadays, users of paid stock photo databases expect combined visual searchsearch by tags, advanced filtering, high-quality photos, or even an editing interface.

When you implement an upscaling solution, you can level up your customer experience, ensure that images coming from thousands of authors will maintain a certain quality, or even make it a part of your own image editor.

Real Estate Photos

Real estate properties with great image galleries have a significantly greater chance of catching the attention of visitors and finding buyers faster.

If you have a collection of real estate images, you can use Custom Image Recognition to automatically choose the best pictures to be displayed, and then use the Image Upscaler to increase the resolution of images. To do so, you will need to train your categorization task first and then combine it with Image Upscaler via Flows.

Enhance image resolution by 2, 4 or 8 times for real estate images.

E-Commerce

Online sellers usually receive their product pictures from various sources. That is why upscaler is a useful visual merchandising and product page optimization tool. You can add the image enhancement into your automatic image processing system to get a unified resolution for the product listing as well as the highest quality images for the product page.

This can also be done with Flows: you can create a task, which will choose all low-quality images and send them to an upscaling task. You can also combine this service with background removal or add it into a more complex Flow with tagging tasks.

Want to know more? Read how our AI helps online businesses.

Gaming

Upscaling technology is getting used in more and more industries, but the first super-resolution AI models were used in the gaming industry. For example, Xbox or your latest Nvidia GPU card can artificially increase the resolution of the game. Using image enhancement in games has several advantages:

  • The rendering mechanism is used for creating low-resolution scenes and then a fast AI model is used to improve the resolution
  • Older games, that are natively optimized for lower resolution, can be eventually played with improved graphics in a higher resolution

Generated Art

Generated images, artworks, and concept art are becoming increasingly popular with technologies such as Dall-E 2 and Midjourney. We tried our Generative (GAN) model on these photos and the results are amazing! You can get beautiful printable art in 4k or 8k resolution with our AI via API. What a time to be alive!

The Technology Behind Image Upscaler

Ximilar currently provides two image upscaling solutions: the Classic Image Upscaler and GAN Upscaler.

Classic Image Upscaler

The Classic Image Upscaler is based solely on pixel multiplication. It multiplies each pixel in an image 2–8 times to achieve a higher resolution without modifications to the image. The image upscaled by a classic upscaler is as true to the original image as possible. It is ideal if you only need to upscale your images without adding anything new. Typical examples are CCTV footage or images with delicate patterns and details, that should remain unchanged.

Ximilar is using the latest architecture of convolutional neural networks trained on high and low-quality images. The model outperforms the bicubic interpolation used in programs like Photoshop by several times.

Post-Processing Methods

The post-processing API can be used to remove unnecessary artifacts and noise from images (Artifact removal), focus on small details (High fidelity), or significantly smooth the entire image (Ironed out).

Different modes of the image upscaling smart algorithm to fine-tune details on the image.
Different modes of the Image Upscaler smart algorithm to fine-tune details on the image.

Each of these post-processing methods is good for different types of images. For example, smoothing is ideal for vector graphics or designs. Artifact removal is best for real-life images, e.g. family photos. High fidelity can be used in professional graphics.

GAN Image Upscaler

GAN Image Upscaler is a bit more advanced, and in fact, recommended upscaling technology, especially for commercial content. This upscaler analyzes the colors, edges, corners, light and shade in the original image and enhances its resolution by generating new pixels, that are as relevant pixels as possible to make the resulting images natural-looking. It makes stock photos and product images look more appealing.

How to Upscale an Image Using the Image Upscaler?

A lot of smartphone apps use upscaling models to improve user photos. Brands such as iPhone or Huawei include enhancing models in their software. These models are hidden from the eyes of the user and participate in making photos. Our super-resolution model can be used anywhere simply by calling the Rest API.

Synchronous and Asynchronous API Requests

A basic upscaling task uses synchronous request, meaning you upload an image, wait for it to be processed and eventually get the upscaled result. Synchronous API requests are typically used in public upscaling tools and are currently set for testing purposes in our App. They can however be ineffective for companies that upscale large volumes of data at once and want to keep track of the progress.

That is why we also provide and recommend an API endpoint for asynchronous requests. The difference is that you send multiple upscaling requests (specified by id), they are queued and then processed one by one. You can also send other requests to track the progress of the job. We especially recommend this approach if you need to upscale whole databases, e.g. e-shops with large product photo collections or stock photo databases. You can also use Webhook and get a notification once the job is done.

The model is accessible via the following async API endpoints:

https://api.ximilar.com/account/v2/request

You can also test upscaling of images in Ximilar App (with the option to use the latest GAN model).

Image Upscaler at Stockphotos.com

The Image Upscaler by Ximilar is used at one of the best-known stock photo banks, StockPhotos. The service is free of charge for testing purposes.

Would you like to implement an AI image upscaler into your own app or system? Feel free to contact us anytime.

The post Image Upscaler: API for Super-Resolution Image Enhancing appeared first on Ximilar: Visual AI for Business.

]]>
Explainable AI: What is My Image Recognition Model Looking At? https://www.ximilar.com/blog/what-is-your-image-recognition-looking-at/ Tue, 07 Dec 2021 14:16:20 +0000 https://www.ximilar.com/?p=3185 With the AI Explainability in Ximilar App, you can see which parts of your images are the most important to your image recognition models.

The post Explainable AI: What is My Image Recognition Model Looking At? appeared first on Ximilar: Visual AI for Business.

]]>
There are many challenges in machine learning, and developing a good model is one of them. Even though neural networks are very powerful, they have a great weakness. Their complexity makes it hard to understand how they reach their decisions. This might be a problem when you want to move from development to production, and it might eventually cause your whole project to fail. But how can you measure the success of a machine learning model? The answer is not easy. In our opinion, the model must excel in a production environment and should work reliably in both common and uncommon situations.

However, even when the results in production are good, there are areas, where we can’t simply accept black box decisions without being sure, how the AI made them. These areas are typically medicine and biotech or any other field where there is no place for errors. We need to make sure that both output and the way our model reached its decision make sense – we need explainable AI. For these reasons, we introduced a new feature to our Image Recognition service called Explain.

Training Image Recognition

Image Recognition is a Visual AI service enabling you to train custom models to recognize images or objects in them. In Ximilar App, you can use Categorization & Tagging and Object Detection, which can be combined with Flows. For example, the first task will detect all the human models in the image and the categorization & tagging tasks will categorize and tag their clothes and accessories.

Image recognition is a very powerful technology, bringing automation to many industries. It requires well-trained models, and, in the case of object detection, precise data annotation. If you are not familiar with using image recognition on our platform, please try to set up your own classifier first.

These resources should be helpful in the beginning:

From model-centric to data-centric with explainable AI

Explaining which areas are important for the leaf disease recognition model when predicting a label called “canker”.

When you want a model which performs great in a production setting and has high accuracy, you need to focus on your training data first. Consistency of labelling, cleaning datasets from unnecessary samples/labels, and adding feature-rich samples that are missing is much more important than the newest architecture of the neural network. Andrew Ng, an entrepreneur and professor at Stanford, is also promoting this approach to building machine learning models.

The Explain feature in our App tells you:

  • which parts of images (features and pixels) are important for predicting specific labels
  • for which images the model will probably predict the wrong results
  • which samples should be added to your training dataset to improve performance

Simple Example: T-shirt or Not?

Let’s look at this simple example of how explainable AI can be useful. Let’s say we have a task containing two categories – t-shirts and shoes. For a start, we have 20 images in each category. It is definitely not enough for production, but it is enough if you want to experiment and learn.

Our neural network trained with Ximilar SaaS platform has two labels: shoes and t-shirt.
This neural network has two labels: shoes and t-shirt.

After playing with the advanced options and short training, the result seems really promising:

Using Explain on a Training Image

But did the model actually learn what we wanted? To check, what the neural network find important when categorizing our images, we will apply two different methods with the tool Explain:

  • Grad-CAM (first published in 2016) – this method is very fast, but the results are not very precise
  • Blur Integrated Gradients (published in 2020) smoothed with SmoothGrad – this method provides much more details, but at the cost of computational time
Grad-Cam result of explain feature. Model is looking mostly at the head/face.
Grad-Cam result of Explain feature. As you can see, the model is looking mostly at the head/face.
Blur-Integrated Gradients results, the most important features are head/face, same as what grad-cam is telling us.
Blur-Integrated Gradients results, the most important features are head/face, similar to what grad-cam is telling us.

In this case, both methods clearly demonstrate the problem of our model. The focus is not on the t-shirt itself, but on the head of the person wearing it. In the end, it was easier for the learning algorithm and the neural network to distinguish between the two categories using this feature instead of focusing on the t-shirt. If we look at the training data for label t-shirt, we can see that all pictures include a person with a visible face.

Data for T-shirt label for Image recognition task for Fashion Recognition.
Data for T-shirt label for the image recognition task. This small dataset contains only photos with visible faces, which can be a problem.

Explainability After Adding New Data

The solution might be adding more varied training data and introducing images without a person. Generally, it’s a good approach to start with a small dataset and over time increase it to a bigger one. Adding visually broad images helps model with overfitting on wrong features. So we added more photos to the label and trained the model again. Let’s see what the results look like with our new version of the model:

After retraining the model on new data, we can see the improvement for what features is neural network looking for.
After retraining the model on new data, we can see the improvement for what features the neural network looking for.

The Grad-CAM result on the left is not very convincing in this case. The image on the right shows the result of Blur Integrated Gradients. Here you can see, how the focus moved from the head to the t-shirt. It seems like the head still plays some part, but there is much less focus on it.

Both methods for explainable AI have their drawbacks, and sometimes we have to try more pictures to get a better understanding of model behaviour. We also need to mention one important point. Due to the way the algorithm works, it tends to prefer edges, which is clearly visible in the examples.

Summary

The Explainability and Interpretability of Neural Networks is a big research topic, and we are looking forward to adopting and integrating more techniques into our SaaS AI solution. AI Explainability that we showed you is only one tool amongst many towards data-centric AI.

If you have any troubles, do not hesitate to contact us. The machine learning specialists of Ximilar have vast experience with different kinds of problems, and are always happy to help you with yours.

The post Explainable AI: What is My Image Recognition Model Looking At? appeared first on Ximilar: Visual AI for Business.

]]>
How to deploy object detection on Nvidia Jetson Nano https://www.ximilar.com/blog/how-to-deploy-object-detection-on-nvidia-jetson-nano/ Mon, 18 Oct 2021 12:13:16 +0000 https://www.ximilar.com/?p=6124 We developed a computer vision system for object detection, counting, and tracking on Nvidia Jetson Nano.

The post How to deploy object detection on Nvidia Jetson Nano appeared first on Ximilar: Visual AI for Business.

]]>
At the beginning of summer, we received a request for a custom project for a camera system in a factory located in Africa. The project was about detecting, counting, and visual quality control of the items on the conveyor belts in a factory with the help of visual AI. So we developed a complex system with neural networks on a small computer called Jetson Nano. If you are curious about how we did it, this article is for you. And if you need help with building similar solutions for your factory, our team and tools are here for you.

What is NVIDIA Jetson Nano?

There were two reasons why using our API was not an option. First, the factory has unstable internet connectivity. Also, the entire solution needs to run in real time. So we chose to experiment with embedded hardware that can be deployed in such an environment, and we are very glad that we found Nvidia Jetson Nano.

[Source]

Jetson Nano is an amazing small computer (embedded or edge device) built for AI. It allows you to do machine learning in a very efficient way with low-power consumption (about 5 watts). It can be a part of IoT (Internet of Things) systems, running on Ubuntu & Linux, and is suitable for simple robotics or computer vision projects in factories. However, if you know that you will need to detect, recognize and track tens of different labels, choose the higher version of Jetson embedded hardware, such as Xavier. It is a much faster device than Nano and can solve more complex problems.

What is Jetson Nano good for?

Jetson is great if:

  • You need a real-time analysis
  • Your problem can be solved with one or two simple models
  • You need a budget solution & be cost-effective when running the system
  • You want to connect it to a static camera – for example, monitoring an assembly line
  • The system cannot be connected to the internet – for example, because your factory is in a remote place or for security reasons

The biggest challenges in Africa & South Africa remain connectivity and accessibility. AI systems that can run in house and offline can have great potential in such environments.

Deloitte: Industry 4.0 – Is Africa ready for digital transformation?

Object Detection with Jetson Nano

If you need real-time object detection processing, use the Yolo-V4-Tiny model proposed in this repository AlexeyAB/darknet. And other more powerful architectures are available as well. Here is a table of what FPS you can expect when using Yolo-V4-Tiny on Jetson:

ArchitecturemAP @ 0.5FPS
yolov4-tiny-2880.34436.6
yolov4-tiny-4160.38725.5
yolov4-2880.5917.93
Source: Github

After the model’s training is completed, the next step is the conversion of the weights to the TensorRT runtime. TensorRT runtimes make a substantial difference in speed performance on Jetson Nano. So train the model with AlexeyAB/darknet and then convert it with tensorrt_demos repository. The conversion has multiple steps because you first convert darknet Yolo weights to ONNX and then convert to TensorRT.

There is always a trade-off between accuracy and speed. If you do not require a fast model, we also have a good experience with Centernet. Centernet can achieve a really nice mAP with precise boxes. If you run models with TensorFlow or PyTorch backends, then the speed is slower than Yolo models in our experience. Luckily, we can train both architectures and export them in a suitable format for Nvidia Jetson Nano.

Image Recognition on Jetson Nano

For any image categorization problem, I would recommend using simple architecture as MobileNetV2. You can select for example the depth multiplier for mobilenet of 0.35 and image resolution 128×128 pixels. In this way, you can achieve great performance both in speed and precision.

We recommend using TFLITE backend when deploying the recognition model on Jetson Nano. So train the model with the TensorFlow framework and then convert it to TFLITE. You can train recognition models with our platform without any coding for free. Just visit Ximilar App, where you can develop powerful image recognition models and download them for offline usage on Jetson Nano.

Detecting, tracking and counting of objects on nvidia jetson.
A simple Object Detection camera system with the counting of products can be deployed offline in your factory with Jetson Nano.

Jetson Nano is simple but powerful hardware. However, it is not as powerful as your laptop or desktop computer. That’s why analyzing 4k images on Jetson will be very slow. I would recommend using max 1080p camera resolution. We used a camera by Raspberry PI, which works very well on Jetson and installation is easy!

I should mention that with Jetson Nano, you can come across some temperature issues. Jetson is normally shipped with a passive cooling system. However, if this small piece of hardware should be in the factory, and run stable for 24 hours, we recommend using an active cooling system like this one. Don’t forget to run the next command so your fan on Jetson starts working:

sudo jetson_clocks --fan

Installation steps & tips for development

When working with Jetson Nano, I recommend following guidelines by Nvidia, for example here is how to install the latest TensorFlow version. There is a great tool called jtop, which visualizes hardware stats as GPU frequency, temperature, memory size, and much more:

Jtop linux tool on jetson nano.
jtop tool can help you monitor statistics on Nvidia Jetson Nano.

Remember, the Jetson has shared memory with GPU. You can easily run out of 4 GB when running the model and some programs alongside. If you want to save more than 0.5 GB of memory on Jetson, then run the Ubuntu on LXDE desktop environment/interface. The LXDE is more lightweight than the default Ubuntu environment. To increase memory, you can also create a swap file. But be aware that if your project requires a lot of memory, it can eventually destroy your microSD card. More great tips and hacks can be found on JetsonHacks page.

For improvement of the speed of Jetson, you can also try these two commands, which will set the maximum power input and frequency:

sudo nvpmodel -m0
sudo jetson_clocks

When using the latest image for Jetson, be sure that you are working with the right OpenCV versions of the library. For example, some older tracking algorithms like MOSSE or KCF from OpenCV require a specific version. For some tracking solutions, I recommend looking on PyImageSearch website.

Developing on Jetson Nano

The experience of programming challenging projects, exploring new gadgets, and helping our customers is something that deeply satisfies us. We are looking forward to trying other hardware for machine learning such as Coral from Google, Raspberry Pi, or Intel Movidius for Industry 4.0 projects.

Most of the time, we are developing a machine learning API for large e-commerce sites. We are really glad that our platform can also help us build machine learning models on devices running in distant parts of the world with no internet connectivity. I think that there are many more opportunities for similar projects in the future.

The post How to deploy object detection on Nvidia Jetson Nano appeared first on Ximilar: Visual AI for Business.

]]>